

Summary of GCOM-C Mission design

Hiroshi Murakami Earth Observation Research Center, Japan Aerospace Exploration Agency

> IOCCG L1-Req WG 20-21 April 2010

> > 1

History of mission definition of GCOM-C

Spatial resolution

Ikm CHI

lun 2004 Aqua -Terr

- Discussion of mission targets in the GCOM advisory committee (~2005)
 - ✓ Monitoring & knowledge of the coastal processes
 - ✓ Relation with international missions (NPOESS (JPSS), Sentinel-3...)
 - ✓ Higher resolution for small Japanese islands, but accept lower frequency
- (1) Ocean primary production
- (2) Coastal ocean eutrophication and land-sea substance exchange
- (3) Marine biological resources
- (4) Ocean-climate system by effective use of satellite-ground and ocean-land-atmosphere observations
- (5) Both global and local near-real time processing
- Discussion of sensor • specification(~2005)
 - Wavelength \checkmark
 - ✓ Dynamic range evaluation
 - Why 250m spatial resolution
 - Why do we need high SNR
 - Why >1000-km swath \checkmark
 - ✓ Cloud difference between LT 10:30 and 13:30
 - ✓ Downlink data-volume

250m CHL

150 180 -150 -120 -90

0 0.1 0.2

0.3

Longitude

-0.2 -0.1

GCOR

GCOM-C implementation systems

Blue arrows show contribution to the mission targets. Black tick and thin arrows are satellite data (including calibration/ supplementary data) and other information or codes.

1. Mission Concept of GCOM-C

1.1 JAXA global earth observation missions

• GCOM-C for the global surface radiation budget and carbon cycle

- (1) GCOM-C: Long-term observation of the horizontal distribution of aerosol, cloud, and ecosystem CO₂ absorption and discharge ② GCOM-W: Long-term observation of water-cycle such as the snow/ice coverage, water vapor, and SST
- 3 GOSAT: Observation of distribution and flux of the atmospheric greenhouse gases, $ext{CO}_2$ and $ext{CH}_4$
- (4) EarthCARE/CPR: Observation of vertical structure of clouds and aerosols
- (5) GPM/DPR: Accurate and frequent observation of precipitation with active and passive sensors
- **(6)** ALOS: Fine resolution mapping by optical and SAR instruments

1. Mission Concept of GCOM-C

1.2 Radiation budget by the atmosphere-surface system

Monitoring and process investigation about cloud and aerosol by GCOM-C & EarthCARE

Evaluation of model outputs and process parameterization

<u>Climate model prediction</u> present and future cloud and aerosol roles in the global warming scenarios

Today's the most significant uncertainty of radiative forcing is direct/indirect role of cloud-aerosol system

Today's the most significant factor:

Figure 2.4. Global average radiative forcing (RF) in 2005 (best estimates and 5 to 95% uncemainty ranges) with respect to 1750 for CO₂, CH₄, N₂O and other important agents and mechanisms, together with the typical geographical extent (spatial scar to of the forcing and the assessed level of scientific understanding (LOSU), Aerosols from explosive volcanic eruptions contribute an additional episodic coding to range for a few years following an eruption. The range for linear contrails does not include other possible effects of aviation on cloudiness. (WGI Figure SPM.2)

- Climate monitoring and research need long-term consistent observation
- GCOM-W/C observe more than 10 years by three satellites with one-year overlap.

1.5 Social needs of ocean area

Effective ocean-color-ecosystem research for the social needs

1.6 Science Targets

Social needs Ocean science targets	Global warming	Water-energy (heat) cycle	Coastal environment	Fishery
(1) Ocean primary production	0		0	0
(2) <i>Coastal ocean</i> eutrophication and land-sea substance exchange	0		0	0
(3) Marine biological resources				0
(4) <i>Ocean-climate system by effective use</i> of satellite-ground and ocean-land-atmosphere	0	0	0	
(5) Satellite sensor & data product improvement	0	0	0	0

They will also contribute to the implement plan and targets of GEOSS.

(1) Ocean Primary Production

- The ocean primary production can be a sink of the atmospheric CO₂ regulating the global warming.
 - Global trend and distribution
- The estimation needs integrative analysis of ocean colour with related parameters, such as solar irradiance (PAR), nutrient, water temperature, and a vertical mixing/stratification.
- Solutions: global ocean color observation by GCOM-C
 - Improvement of satellite ONPP algorithm
- On J Improvement of input parameters (CHL, SST, PAR, nLw, IOP, species..)
 - Sample number and accuracy of in-
- situ observation
 Begin ∫ Combination with ocean ecosystem
- ning production models

(2) Coastal Ocean

- Coastal ocean has large productivity and strong relation to the human activities.
- Estimation of coastal primary production needs special considerations about irregular light, nutrient, plankton species and their vertical profiles due to inland-water and substance (including carbon).
- Solutions : 250m observation by GCOM-C
 - Local characterization/ standardization of *plankton taxa and optical properties*
 - ☐ Land aerosol correction
 - Sunglint correction (coastal area)
 - High spatial resolution sensor (<250m)
- *Begin* Adjacent scattering from bright surface
 - Land water inflow by cooperation with
 - hydrology and land surface model

Chlorophyll-a concentration east of Hokkaido Japan on 24 Sep. 2003 estimated by ADEOS-II/GLI 250m channels.

Absorption spectra of different algae

On going

ning

(3) Marine biological resources

- Fishery estimation has been operated since OCTS
- Prediction and catch management of the marine resources are required today
- Solutions: Ocean color observation by GCOM-C
 - Near-real time *robust* products
 - Plankton taxa
 - Cooperation with ocean ecosystem/ bioresources model

Chlorophyll-a concentration in the northwestern Pacific in June 2003 overlaid on fisheries of skipjack and tuna.

Ocean current structure and marine ecosystem

(4) Ocean-climate system by effective use

(4-1) Integrated use of different sensors and parameters

- Data merger through sensor cross-calibration and product cross-validation
 - Sensor cross-calibration in cooperation with CEOS/WGCV/IVOS
 - Product cross-validation in cooperation with CEOS/OCR-VC, IOCCG..

(4) Ocean-climate system by effective use

(4-2) Data/knowledge integration using numerical models

Solutions: Cooperation with model researches,

Connection between model parameters and satellite observations by radiative transfer

(5) Satellite sensor & data products

(5-1) High accuracy products for the climate research

- For every purposes, improvement of satellite products accuracy is still the most essential
- Solutions :
 - Improvement of in-water algorithms of complicated substance composition (e.g., coastal area),
 - Combination with bio-physical-optical model
 - Improvement of atmospheric correction (extraction of the waterleaving signals) in conditions of much suspended matter, whitecaps, sunglint and *irregular aerosols including absorptive aerosols*
 - Long-term/inter-sensor continuity & consistency
 - High sensor performance (SNR and perfect sensor calibration model)

- The next Japanese ocean color mission is Global Change Observation Mission for Climate research (GCOM-C)
- The mission focuses the carbon cycle and radiation budget, and will consist of three satellites for 13 years from early 2014 to contribute detection of the "global change".
- The GCOM-C will carry Second-generation Global Imager (SGLI) which is a radiometer of 380-12000nm wavelength, 1150-1400km swath width, and descending orbit around 10:30am, as a follow-on mission of ADEOS-II/GLI.
- Features of SGLI are 250m-spatial resolution (500m for thermal infrared) and polarization/along-track slant view channels (red and near-infrared), which will improve coastal ocean, land, and aerosol observations.

2. GCOM-C/SGLI design

	2.1 GCO	M-C	observat	ion _l	oroducts		
	Common						
Dediene	• TOA radiance (including	g system					
Radiand	geometric correction)			-			
	- Ra	adiation	budget by the atmo	sphere-	surface system		Con the second
1 and the second	• Ca	arbon cy	cle in the Land and	Öcean	the second second	1	
		P	1	P			
	Land		Atmosphere		Ocean		Cryosphere
Surface	Precise geometric correction		Cloud flag/Classification		Normalized water leaving radiance		Snow and Ice covered area ECV
ce	Atmospheric corrected reflectance		Classified cloud fraction	Ocean	Atmospheric correction parameter	Area/	OKhotsk sea-ice distribution
	 Vegetation index 		• Cloud top temp/height	COIOI	Photosynthetically	on	Snow and ice
	 Above-ground biomass E 	Cloud	Water cloud optical	ECV	available radiation		classification
Vegetati	Vegetation roughness	ECV	thickness / effective		Euphotic zone depth		Snow covered area in forest and mountain
on and			Ice cloud ontical		Chlorophyll-a conc.		Snow and ice surface
carbon	Snadow Index Fraction of Absorbed		thickness	In-water	Suspended solid conc.		Temperature
cycle	Photosynthetically		Water cloud geometrical		organic matter		Snow grain size of
	available radiation <i>ECV</i>		thickness		Inherent optical		shallow layer
	Leaf area index ECV		 Aerosol over the ocean 	In-water	properties	Surface	Snow grain size of
Temp.	Surface temperature	Aerosol	Land aerosol by near	Temp.	• Sea surface temp. ECV	propertie	subsurface layer
	Land net primary	ECV	• Acrosol by Polarization		Ocean net primary	S	snow grain size of top
	production	Dediction	• Aeroson by Polarization		productivity		Snow and ice albedo FCV
Applicati	Water stress trend	budget	Short-wave radiation flux		Phytoplankton functional		Snow impurity
on	Fire detection index <u>ECV</u>	FCV		Applicati	Redtide		Ice sheet surface
	Land surface albedo				multi sensor merged		roughness
	Lanu surrace albeut FCV	Blue: s	standard products		ocean color	Boundary	Ice sheet boundary
		Red: r	esearch products		multi sensor merged SST		

2.2 SGLI products and channels

CH	λ	Δλ	L _{std}	L _{max}	SNR	IFOV*3			Land							Atmosphere					Ocean								Cryosphere																			
-	VN, Ρ: Τ: μ	: nm m	V W/n T:	N, P: I²/sr/μm Kelvin	at L _{std} VN, P: - T: NE∆T	m	Precise Geometrically Corrected Image	Atmospherically Corrected Land surface Reflectance	Vegetation Roughness Index including BSI_P and BSI_V Vegetation Index including NDVI and EVI	Shadow Index	Land Surface Temperature	Fraction of Absorbed Photosynthetically Active Radiation	Above-Ground BIUmass	Land Net Primary Production	Water Stress trend	Fire Detection Index	Land Cover Type	Land surface AI Bodo	Classified CLoud Fraction	Cloud Top Temperature and Height	Water Cloud Optical Thickness and Particle Effective Radius	Ice Cloud Ontical Thickness	AeRosol over the ocean by Visible and near intrared	Land AeRosol over the land by near Ultra violet	AeRosol by Polarization	LongWave Radiation Flux	ShortWave Radiation Flux	Atmospheric Correction Parameters	Ocean Photosynthetically Available Radiation	Euphotic Zone Depth	Suspended Solid concentration	absorption coefficient of Colored Dissolved Organic Matter	Inherent Optical Properties	Ocean Net Primary Productivity	PHytoplankton Functional Type	Red TiDe	multi sensor Merged Ocean Color parameters	multi sensor Merged Sea Surface Temperature	Show and Ice Covered Area	Snow and Ice Classification	Snow Covered Area in Forest and Mountain	Snow and Ice Surface Temperature	SNow Grain Size of shaLlow layer	SNow Grain Size of Subsurface layer	SNow Grain Size of Top layer	Snow and Ica Al Badh	Ice Sheet surface RouGHness	Ice Sheet Boundary Monitoring
VN1	380	10	60	210	250	250	U	U																U		Ι	1	ΤE			1	U	U		R	R	U			Т	Т	T	U	Τ	1	JM		\square
VN2	412	10	75	250	400	250	U	Т	U	U	U			U			υI	J					U	Ε		1	1	T	U			E	U		R	R	U								1	R R		
VN3	443	10	64	400	300	250	U	Т	U	U	U	Ι		U			UI	J					U			Ι	1	T	U	UE		E	U		U	U	U		UΙ	JĽ	JU	S	U	U	S	JM	S	U
VN4	490	10	53	120	400	250																						T		UN	1 U		U		U	U	U											
VN5	530	20	41	350	250	250	U	Т		U	U	Ι		U			UI	Jι	JC	С	С	C (CC	С	С			T	U	UE			U	CI	R	R	U	С	υι	JU	JU	S	S	S	S	ΞS	S	U
VN6	565	20	33	90	400	250															\square						_	T		UN	1 E	U	U	1	U	U	U	_			\perp	\bot	\square	\square	Ц	╇	┢	\square
VN7	673.5	20	23	62	400	250		_		_			_	_				_					U	_		1	1	ΤM			E		U		R	R	U	_			\perp				\square	+	╞	
VN8	673.5	20	25	210	250	250	E	T	MM	1 U	U			E			E	Ιl	ЛС	С	С	C (С	С		_	R	U		_	+	_	CI	╇		R	С	υι	JU	<u>) U</u>	S	S	S	S	<u> JIS</u>	R	<u> U</u>
VN9	763	12	40	350	1200	1000											_		_		\square	!	M			Ι	1				┶		_		┶			_	R		⊥	┶	\perp		Щ	╇	╞	\square
VN10	868.5	20	8	30	400	250															\square	_	U			Ι	1	M					_				U	_			┶	┶			\square	╇	╞	\square
VN11	868.5	20	30	300	200	250	U	T	UU	JU	U			U			UI	Jl	JC	С	С	C (CC	С	С		4	R	U		_		_	CI			R	С	UΙ	JU	JU	S	Μ	S	S	JU	R	U
P1	6/3.5	20	251	250~	250~1	1000	U	U	U	I R	_			R			RI	۲.	+	-	\vdash	_			E		-	R	R		+	+	-		+			_	_	R	4	╇	+	\square	⊢	╇	R	
P2	868.5	20	30*1	300 ^{*1}	250*1	1000	U	U	U	I R				R			RI	R							E		_	R					_							R	2				Ц	┶	R	
SW1	1050	20	57	248	500	1000												Ν	/ C	С	М	C	U			1	Т	R	С										υι	JU	JU	S	S	R	S	JS	S	U
SW2	1380	20	8	103	150	1000												ι	J																				Μl	JC	; C	С	С	С	С	С	С	
SW3	1630	200	3	50	57	250	U	Т			U			U	R	U	E	Jι	JC	С		С						R											Μl	JU	JU	С	С	С	R	JС	C	U
SW4	2210	50	1.9	20	211	1000	U	Т			U					U	U				М		U			Τ	Т	R											U		U							
T1	10.8*2	0.7*2	300	180~340	0.2	500*4	U				U				U	U		ι	J C	U		UI	U			Ι	Ι							MI		R		М	υι	JU	JU	Μ	S	S	S	SS	S	
T2	12.0 ^{*2}	0.7*2	300	180~340	0.2	500*4	U				М		Τ		U	U	T	ι) C	U		U				R	R							E				Е	U	F	2	М				Τ	Г	П

M: Most essential, E: essential, U: used channel, T: correction targets, R: future research, I: indirect use, C: cloud detection, S: Snow detection *1: defined as intensity of non-polarized light, *2 :Unit is µm, *3: 1km in the open ocean, *4: 250m mode possibility Green: Succession of GLI standard products, Red: New standard products, and White: research products.

Higher (250-m) resolution, multiband and frequent observation

Optimized for detecting seasonal change of land cover and vegetation

> Daily coverage of SGLI VNR (Simulated by GLI data on 20 March 2003)

File = A2GL1030320-gm0200-PV1B.2880-1441, RGB=678, 545, 460nm

Longitud

250m resolution to detect finer structure in the coastal area such as river outflow, regional blooms, and small current.

250m Ocean colour product simulated using GLI 250m channels

(a) GLI 1km Osaka Bay (1 Oct. 2003, CHL by LCI)

(b) GLI 250m Osaka Bay (1 Oct. 2003, CHL by LCI)

2.4 Special resolution of SGLI VNR (2)

250m resolution and 1150-km swath for regular monitoring of the land and coastal environment such as redtide

1-km and 250-m resolution RGB image simulated using AVNIR-2. Light red filaments in the 250m image were the Noctilca redtide on 19 April 2009 in Wakasa-Bay.

2.5 Special resolution of SGLI thermal infrared

500/250-m thermal bands and 1400-km swath for regular monitoring of the land and coastal heat condition influenced by the land cover and river outflow

1-km and 250-m thermal images on 4 August 2003 simulated using ASTER 11um data

• The SGLI features are finer spatial resolution (250m (VNI) and 500m (T)) and polarization/along-track slant view channels (P), which will improve land, coastal, and aerosol observations. 250m over the Land or coastal

area, and 1km over offshore

GCOM-C SGLI characteristics (Current baseline)									
Orbit	Sun-synchronous (descending local 10:30)	time:							
	Altitude: 798km, Inclination: 98.6d	eg							
Launch Date	Jan. 2014 (HII-A)								
Mission Life	5 years (3 satellites; total 13 years))							
Scan	Push-broom electric scan (VNR: VN Wisk-broom mechanical scan (IRS:	& P) SW & T)							
Scan width	1150km cross track (VNR: VN & P) 1400km cross track (IRS: SW & T)								
Digitalization	12bit	Multi-angle							
Polarization	3 polarization angles for P	obs. for							
Along track direction	Nadir for VN, SW and T, +45 deg and -45 deg for P	674nm and 869nm							
On-board calibration	 VN: Solar diffuser, Internal lamp (P by pitch maneuvers, and dark cu masked pixels and nighttime obs SW: Solar diffuser, Internal lamp, L and dark current by deep space T: Black body and dark current by dep space window All: Electric calibration 	D), Lunar Irrent by .unar, window deep							

SGLI channels												
	λ	Δλ	L _{std}	L _{max}	SNR at Lstd	IFOV						
СН	VN, P, S T: J	SW: nm um	VN W/m² T: K	l, Ρ: /sr/μm (elvin	VN, P, SW: - T: NE∆T	m						
VN1	380	10	60	210	250	250						
VN2	412	10	75	250	400	250						
VN3	443	10	64	400	300	250						
VN4	490	10	53	120	400	250						
VN5	530	20	41	350	250	250						
VN6	565	20	33	90	400	250						
VN7	673.5	20	23	62	400	250						
VN8	673.5	20	25	210	250	250						
VN9	763	12	40	350	1200	1000						
VN10	868.5	20	8	30	400	250						
VN11	868.5	20	30	300	200	250						
P1	673.5	20	25	250	250	1000						
P2	868.5	20	30	300	250	1000						
SW1	1050	20	57	248	500	1000						
SW2	1380	20	8	103	150	1000						
SW3	1630	200	3	50	57	250						
SW4	2210	50	1.9	20	211	1000						
T1	10.8	0.7	300	340	0.2	500						
T2	12.0	0.7	300	340	0.2 🗡	500						

250m-mode possibility ~15min /path (TBC)

- Product definition and accuracy targets of GCOM-C have been set by GCOM advisory committee basing GLI achievements and current and future requirements from application organizations
- The accuracy value includes errors from
 - (1) Calibration of sensor observed radiance
 - (2) Sub-pixel (IFOV) mixing due to the spatial variation of observation targets
 - (3) Algorithm theory and input ancillary data
 - (4) In-situ observation for the validation (comparison)

We used practical accuracy values of current achievements, because these error sources vary with each observation condition.

- SGLI specification is set to achieve the accuracy targets of products within realistic sensor design and costs
- Target accuracy of SGLI ocean color products is set as same level of the GLI products* (by Mean Percent Difference), but try to do by 250m resolution
- (* Murakami et al., 2006: Validation of ADEOS-GLI ocean color products using in-situ observations, J. Oceanography, 62, 373-393)

ref. GLI Specification and products

GLI Channel characteristics

GLI Operational Characteristics

Resolution at	1 km (channels 01-19, 24-27, 30-36), 250 m (20-23,
nadir	28, 29)
Field of view	Cross-track scan with 1600-km swath; observation
	angle $\pm 45^{\circ}$;
	1276 pixels (1 km L1A) or 5104 pixels (250 m
	L1A)
Detectors per scan	Along-track 12 (1 km) or 48 (250 m) detectors
Scanning mirror	Using both (A/B) sides with incident angle from 63
	to 17 degrees
Digital resolution	12 bits
Orbit	Sun synchronous (Descending local time about
	10:30AM)
Recurrent period	4 days (57 paths)
Altitude	803 km
Period	101 min
Tilt angle	±18.5° (along track direction)
Availability	Channels 1-29, daytime (250 m, about 25% of
	daytime); 30-36, all times
Operation period	Dec. 2002- Oct. 2003 (global operation: Apr. 2,
	2003 – Oct. 24, 2003)

Ch	WL ⁴ [nm]	Width⁴ [nm]	Saturation level [W/m ² /sr/µ m]	SNR ⁵ (input level)	F_0 ⁶ [W/m²/µm]	Ch	WL ⁴ [nm]	Width ⁴ [nm]	Saturation level [W/m²/sr/µ m]	SNR ⁵ (input level)	$F_0^{\ 6}$ [W/m²/µ m]
1	380.7	10	683	467 (59)	1095.7	20 ²	462.4	62	691	241 (36)	1965.3
2	399.6	9	162	1286 (70)	1540.3	21 ²	542.1	48	585	141 (25)	1838.8
<u>3</u>	412.3	10	130	1402 (65)	1714.6	22 ²	661.3	59	107	255 (14)	1532.6
4	442.5	9	1101 /680	893 (54)	1885.8	23 ²	824.1	103	235 (2103)	218 (21)	1061.7
5	<u>459.3</u>	9	1241 /769	880 (54)	2082.0	24	1048.6	20	227	381 (8)	654.6
<u>6</u>	489.5	11	64	1212 (43)	1939.8	25	1136.6	69	184	412 (8)	547.6
7	519.2	10	921/569	627 (31)	1792.5	26	1241.0	18	208	303 (5.4)	454.8
8	544.0	10	96 ¹ /596	611 (28)	1858.0	27	1380.6	36	153	192 (1.5)	363.5
<u>9</u>	564.8	10	39	1301 (23)	1789.0	28 ²	1644.9	203	76	298 (5)	233.0
<u>10</u>	624.7	10	32 (283)	1370 (17)	1651.2	29 ²	2193.8	220	32	160 (1.3)	86.7
<u>11</u>	666.7	10	21	1342 (13)	1522.5	01	WL^4	width	Saturation	NEZ	1 <i>T</i>
<u>12</u>	<u>679.9</u>	10	22	1293 (12)	1474.7	Ch	[<i>nm</i>]	[nm]	[Kelvin]	[Kelv	rin]
13	678.6	10	3423	235 (12)	1479.0	30	3721.1	336	345	0.07 (at	300K)
14	710.5	11	16	1404 (10)	1394.0	31	6737.5	531	307	0.03 (at	285K)
15	710.1	11	233 ³	300 (10)	1396.2	32	7332.6	502	322	0.03 (at	300K)
16	749.0	11	11	991 (7)	1274.1	33	7511.4	526	324	0.02 (at	300K)
17	762.0	8	246 ³	293 (6)	1248.9	34	8626.3	519	350	0.05 (at	300K)
18	866.1	20	8	1309 (5)	956.0	35	10768.0	955	354	0.05 (at	300K)
19	865.7	10	211 ³	386 (5)	956.8	36	12001.3	1020	358	0.06 (at	300K)

1. Knee points of the piece-wise linear gain channels 4, 5, 7, and 8.

2. 250m channels. Channels 28 and 29 are re-sampled for each 2-km (1/8) on board and stored in the 1-km product.
 3. Maximum radiance for linear response.

4. Channel center wavelength and width derived from the GLI relative spectral responses (available in

http://suzaku.eorc.jaxa.jp/GLI/cal/). GLI ocean color algorithm derives nLws at under lined thirteen channels.

5. SNR at the standard input level (W/m²/sr/ μ m) was measured in pre-launch evaluation tests.

6. Thuillier 2003 solar irradiance weighted by the GLI channel responses.

GLI ocean color products

Category	Variable code	Description [unit]
(a) NL	nLw_380-710	nLw at 380-710nm (13 channels) [mW/cm ² /sr/µm]
nLw and	La_865	Aerosol radiance at 865nm [mW/cm ² /sr/µm]
atmospheric	nLw_678 and 865	Normalized water leaving radiance at 678 nm and 865 nm estimated by in-water optical model [mW/cm ² /sr/µm]
parameters	Tau_865	Aerosol optical thickness at 865nm
	Angstrom	Aerosol angstrom exponent between 520nm and 865nm
	Aalb	Aerosol albedo at 380nm (Aalb <1.0 means absorptive aerosol)
	PAR	Photosynthetically available radiation [Ein/m ² /day]
(b) CS	CHLA	Concentration of phytoplankton chlorophyll-a [mg/m ³]
In-water bio-optical	SS	Concentration of suspended solids [g/m ³]
parameters	CDOM	Absorption coefficients of colored dissolved organic matter at 440nm [m ⁻¹]
	K490	Diffuse attenuation coefficients at 490nm [m ⁻¹]

ref. GLI validation results (Murakami et al., 2006)

Statistical equations

	For nLw, Tau_865 and Angstrom	For CHLA, SS, CDOM and K490
Xave	$\sum_{i=1\sim N} (x_i) / N$	$10^{(\sum_{i=1}N(\log_{10}(x_{i}))/N)}$
Yave	$\sum_{i=1\sim N} (y_i) / N$	10^($\sum_{i=1 \sim N} (\log_{10}(y_i)) / N$)
RMSD	sqrt($\sum_{i=1\sim N}$ ((y _i -x _i) ²) /N)	sqrt($\sum_{i=1\sim N}$ ((log ₁₀ (y _i)-log ₁₀ (x _i)) ²) /N)
Ratio	$\sum_{i=1\sim N} (y_i / x_i) / N$	
MPD [%]	$\sum_{i=1 \sim N} (y_i^{\prime} x_i^{} - 1) \ /N \times 100$	
MedPD [%]	$median_{i=1} (y_i/x_i - 1) \times 100$	

N: number of data samples (both *in-situ* and GLI data are valid)

x_i: *in-situ* data (i=1~N)

 y_i : GLI data (i=1~N)

Units of Xave, Yave and RMSD for nLw and units of Xave and Yave for CHLA, SS, CDOM and K490 are mW/cm²/sr/µm, mg/m³, g/m³, m⁻¹, and m⁻¹ respectively.

CHLA and nLw_443 errors in several observation conditions

Flogs		C	THLA				Global		
riags	Ν	Ratio	MPD	MedPD	Ν	Ratio	MPD	MedPD	Area%
Original	237	1.27	93.7	61.9	435	1.48	65.9	23.5	100
(i) Model out of range*	- 38	1.61	137.0	75.9	90	1.45	66.4	48.8	32
(ii) No convergence of iteration*	8	3.11	219.7	24.1	19	1.27	63.2	30.9	1
(iii) Near cloud (cloud in 5×5)*	67	1.11	114.9	84.5	69	2.06	120.5	52.7	-
(iv) Near Land (land in 5×5)*	28	1.82	177.3	93.3	19	2.34	152.2	86.2	-
(v) Thick aerosol (Tau_865>0.25)	73	0.77	77.8	71.7	69	2.75	181.2	72.3	22
(vi) Absorptive aerosol (Aalb<1.0)	154	1.12	94.6	66.7	229	1.61	85.0	37.1	29
(vii) low_nLw_545*	1	0.01	99.3	99.3	11	1.07	36.8	29.7	20
(viii) Sunglint (0.03> $\rho_{\sigma} \cos \theta_{0} / \pi > 0.00005$)	106	0.98	71.3	59.8	201	1.61	74.4	23.9	30
(ix) Shallow area (<30m)	75	1.56	142.1	76.7	134	1.94	121.1	55.4	2
(x) Shallow than Zeu*	57	1.99	155.6	69.1	102	1.62	89.7	53.3	-
(xi) Number less than 5 /9 (3×3 pixels)	5	0.93	55.7	62.8	9	1.62	83.9	58.7	-
(xii) Over 20% deviation in 3×3 pixels	122	1.17	98.5	69.3	83	1.61	91.8	52.7	-
(xiii) SAZ greater than 45 degrees	53	0.81	63.2	65.3	88	1.46	65.7	25.2	24
(xiv) Out of time window (3 hours)	101	1.30	87.4	44.9	105	1.42	63.8	29.3	-
(a) Exclude "*" (i)-(iv), (vii), and (x): " <i>after QC</i> "	116	1.00	54.5	46.6	249	1.36	50.8	17.8	-
(b) Exclude (i)-(v), (vii), (ix), and (x)	81	1.08	44.9	41.2	210	1.11	26.1	16.6	-
(c) Exclude (i)-(iv), (vi)-(viii), (x)-(xii), and (xiv)	16	1.35	42.2	28.0	58	1.08	20.3	12.6	-
(d) Exclude all (i)-(xiv)	11	1.39	49.2	38.2	45	1.06	18.0	8.3	-

Match-up statistics of GLI ocean-color products

-				Origin	al			After QC							
Name	N	Xave	Yave	RMSD	Ratio	MPD	MedPD	N	Xave	Yave	RMSD	Ratio	MPD	MedPD	
nLw_380	85	0.713	0.748	0.258	1.33	60.8	28.2	42	1.009	1.014	0.223	1.03	31.0	16.3	
nLw_400	83	1.059	1.157	0.321	1.35	53.3	22.4	41	1.500	1.552	0.259	1.09	23.7	14.1	
nLw_412	328	0.938	1.058	0.413	1.63	80.9	29.2	173	1.200	1.253	0.345	1.44	61.4	19.0	
nLw_443	435	1.083	1.208	0.448	1.48	65.9	23.5	249	1.270	1.348	0.356	1.36	50.8	17.8	
nLw_460	124	0.864	1.176	0.426	1.81	87.0	43.2	57	1.105	1.406	0.408	1.78	82.1	24.0	
nLw_490	367	1.016	1.022	0.358	1.15	36.9	18.8	221	1.092	1.110	0.299	1.16	33.3	16.1	
nLw_520	385	0.706	0.716	0.353	1.17	39.5	25.0	211	0.650	0.651	0.232	1.15	35.1	19.4	
nLw_545	126	0.505	0.630	0.259	1.47	58.2	36.0	57	0.419	0.560	0.252	1.60	66.1	35.7	
nLw_565	343	0.595	0.596	0.265	1.29	48.3	28.8	202	0.421	0.451	0.212	1.38	52.7	30.0	
nLw_625	335	0.218	0.179	0.203	3.27	265.5	60.2	193	0.106	0.113	0.120	4.28	353.7	74.8	
nLw_666	265	0.131	0.079	0.161	1.98	152.9	62.5	185	0.077	0.056	0.108	2.29	173.0	62.5	
nLw_680	307	0.146	0.089	0.160	1.84	142.4	53.1	200	0.077	0.052	0.102	2.11	160.4	52.5	
nLw_710	13	0.017	0.031	0.060	21.36	2073.0	757.1	12	0.018	0.030	0.061	22.00	2139.7	616.1	
Tau_865	322	0.104	0.149	0.103	2.06	120.9	53.6	201	0.095	0.125	0.086	2.01	117.8	47.6	
Angstrom	322	1.143	0.719	0.730	2.17	188.2	43.5	201	1.066	0.639	0.768	3.03	273.2	46.2	
CHLA	237	1.439	0.877	0.618	1.27	93.7	61.9	116	0.796	0.563	0.448	1.00	54.5	46.6	
SS	41	2.587	1.361	0.632	1.22	106.6	77.3	6	0.997	0.616	0.544	0.97	64.6	56.2	
CDOM	51	0.110	0.025	0.685	0.27	73.2	78.2	13	0.064	0.016	0.650	0.31	69.5	74.3	
K490	61	0.323	0.160	0.433	0.63	51.9	57.0	19	0.142	0.097	0.347	0.85	46.8	43.4	

"Global Area" gives the percentage of pixels appearing in global equal-degree mapped data (60°N to 60°S)

Locations of the in-situ observations

Xave, Yave, and RMSD of CHLA, SS, CDOM and K490 were Log_{10} transformed before the statistic calculations.

2.7 GCOM-C products accuracy targets (Standard-1)

Area	group	Product	Day/night	Grid size	Release threshold ^{*1}	Standard accuracy ^{*1}	Target accuracy ^{*1}
Common	radiance	TOA radiance (including system geometric correction)	TIR and land 2.2µm: both Other VNR,SWI: daytime (+special operation)	VNR,SWI Land/coast: 250m, offshore: 1km, polarimetory:1km TIR Land/coast: 500m, offshore: 1km	Radiometric 5% (absolute ^{*3}) ^{*5} Geometric<1pixel	VNR,SWI: 5% (absolute ^{*3}), 1% (relative ^{*4}) TIR: 0.5K (@300K) Geometric<0.5pixel	VNR,SWI: 3% (absolute ^{*3}), 0.5% (relative ^{*4}) TIR: 0.5K (@300K) Geometric<0.3pixel
	ې ref	Precise geometric correction	both	250m	<1pixel ^{*6}	<0.5pixel ^{*6}	<0.25pixel ^{*6}
	Surface Flectance	Atmospheric corrected reflectance (incl. cloud detection)		250m	0.3 (<=443nm), 0.2 (>443nm) (scene) ^{*7}	0.1 (<=443nm), 0.05 (>443nm) (scene) ^{*7}	0.05 (<=443nm), 0.025 (>443nm) (scene) ^{*7}
	 €	Vegetation index		250m	Grass:25%(scene), forest:20%(scene)	Grass:20%(scene), forest:15%(scene)	Grass:10%(scene), forest:10%(scene)
Lan	eget: arb	Above-ground biomass	Daytime	1km	Grass:50%, forest: 100%	Grass:30%, forest:50%	Grass:10%, forest:20%
0	atio	Vegetation roughness index		1km	Grass&forest: 40% (scene)	Grass& forest:20% (scene)	Grass&forest:10% (scene)
	on a cyc	Shadow index		250m, 1km	Grass&forest: 30% (scene)	Grass& forest:20% (scene)	Grass&forest:10% (scene)
	le	fapar		250m	Grass:50%, forest: 50%	Grass:30%, forest:20%	Grass:20%, forest:10%
		Leaf area index		250m	Grass:50%, forest: 50%	Grass:30%, forest:30%	Grass:20%, forest:20%
	temper ature	Surface temperature	Both	500m	<3.0K (scene)	<2.5K (scene)	<1.5K (scene)

Common note:

*1: The "release threshold" is minimum levels for the first data release at one year from launch. The "standard" and "research" accuracies correspond to full- and extra success criteria of the mission respectively. Accuracies are shown by RMSE basically.

Radiance data note:

- *2: TOA radiance is derived from sensor output with the sensor characteristics, and other products are physical parameters estimated using algorithms including knowledge of physical, biological and optical processes
- *3: absolute error is defined as offset + noise
- *4: relative error is defined as relative errors among channels, FOV, and so on.
- *5: Release threshold of radiance is defined as estimated errors from vicarious, onboard solar diffuser, and onboard blackbody calibration because of lack of long-term moon samples

Land data note:

*6: Defined as RMSD from GCP

*7: Defined with land reflectance~0.2, solar zenith<30deg, and flat surface. Release threshold is defined with AOT@500nm<0.25

2.7 GCOM-C products accuracy targets (Standard-2)

Area	Group	Product	Day/night	Grid size	Release threshold ^{*1}	Standard accuracy ^{*1}	Target accuracy ^{*1}
Atmosphere	Cloud	Cloud flag/Classification	Both	1km	10% (with whole-sky camera)	Incl. below cloud amount	Incl. below cloud amount
		Classified cloud fraction	Daytime Both	1km (scene), 0.1deg (global)	20% (on solar irradiance) ^{*8}	15%(on solar irradiance) ^{*8}	10% (on solar irradiance) ^{*8}
		Cloud top temp/height			1K ^{*9}	3K/2km (top temp/height) ^{*10}	1.5K/1km (temp/height) ^{*10}
		Water cloud OT/effective radius	Daytime		10%/30% (CloudOT/radius) *11	100% (as cloud liquid water ^{*13})	50% ^{*12} / 20% ^{*13}
		Ice cloud optical thickness			30%*11	70%*13	20%*13
	aerosol	Aerosol over the ocean			0.1(Monthly τa_670,865) ^{*14}	0.1(scene τa_670,865)* ¹⁴	0.05(scene τa_670,865)
		Land aerosol by near ultra violet			0.15(Monthly τa_380) ^{*14}	0.15(scene τa_380) ^{*14}	0.1(scene τa_380)
		Aerosol by Polarization			0.15(Monthlyτa_670,865) ^{*14}	0.15(scene τa_670,865) ^{*14}	0.1(scene τa_670,865)
Ocea	Ocean color	Normalized water leaving radiance (incl. cloud detection)	Daytime	250m (coast) 1km (offshore) 4~9km (global)	60% (443~565nm)	50% (<600nm) 0.5W/m²/str/um (>600nm)	30% (<600nm) 0.25W/m²/str/um (>600nm)
		Atmospheric correction param			80% (AOT@865nm)	50% (AOT@865nm)	30% (AOT@865nm)
		Photosynthetically available radiatioin			20% (10km/month)	15% (10km/month)	10% (10km/month)
	In-water	Chlorophyll-a concentration			-60~+150% (offshore)	-60~+150%	–35~+50% (offshore), –50~+100% (coast)
		Suspended solid concentration			-60~+150% (offshore)	-60~+150%	-50~+100%
		Colored dissolved organic matter			-60~+150% (offshore)	-60~+150%	-50~+100%
	tempera ture	Sea surface temperature	Both	500m (coast) 1km (offshore) 4~9km (global)	0.8K (daytime)	0.8K (day&night time)	0.6K (day&night time)
Cryosphere	Area/ distributi	Snow and Ice covered area (incl. cloud detection)	Daytime	250m (scene) 1km (global)	10% (vicarious val with other	7%	5%
	on	OKhotsk sea-ice distribution		250m	10% Sat. uata)	5%	3%
	Surface properti es	Snow and ice surface Temperature		500m (scene) 1km (global)	5K (vicarious val with other sat. data and climatology)	2К	1К
		Snow grain size of shallow layer		250m (scene) 1km (global)	100%(vicarious val with climatology between temp-size)	50%	30%

Atmosphere note:

- *8: Comparison with in-situ observation on monthly 0.1-degree
- *9: Vicarious val. on sea surface and comparison with objective analysis data
- *10: Inter comparison with airplane remote sensing on water clouds of middle optical thickness
- *11: Release threshold is defined by vicarious val with other satellite data (e.g., global monthly statistics in the mid-low latitudes)
- *12: Comparison with cloud liquid water by in-situ microwave radiometer
- *13: Comparison with optical thickness by sky-radiometer (the difference can be large due to time-space inconsistence and large error of the ground measurements)
- *14: Estimated by experience of aerosol products by GLI and POLDER

2.7 GCOM-C products accuracy targets (Research product)

Area	Group	Product	Day/night	Grid size	Release threshold ^{*1}
Land		Land net primary production	Daytime	1km	30% (yearly)
		Water stress trend	N/A	500m	10% ^{*15} (error judgment rate)
	Application	Fire detection index	Both	500m	20% ^{*16} (error judgment rate)
		Land cover type	Daytime	250m	30% (error judgment rate)
		Land surface albedo		1km	10%
Atmosphe re	Cloud	Water cloud geometrical thickness		1km (scene), 0.1deg (global)	300m
	Radiation	Long-wave radiation flux	Daytime		Downward 10W/m2, upward 15W/m2 (monthly)
	budget	Short-wave radiation flux			Downward 13W/m2, upward 10W/m2
	Ocean color	Euphotic zone depth		250m (coast), 1km (offshore),	30%
Ocean	In-water	Inherent optical properties		4~9km (global)	a(440): RMSE<0.25, bbp(550): RMSE<0.25
	Application	Ocean net primary productivity		500m (coast), 1km (offshore), 4~9km (global)	70% (monthly)
		Phytoplankton functional type	Daytime	250m (coast), 1km (offshore), 4~9km (global)	error judgment rate of large/ small phytoplankton dominance<20%; or error judgment rate of the dominant phytoplankton functional group <40%
		Redtide			error judgment rate <20%
		multi sensor merged ocean color		250m (coast), 1km (offshore)	-35~+50% (offshore), -50~+100% (coast)
		multi sensor merged SST	Both	500m (coast), 1km (offshore)	0.8K (day&night time)
	Area/	Snow and ice classification	N/A	1km	10%
	distribution	Snow covered area in forest and mountain		250m	30%
ç		Snow grain size of subsurface layer	Daytime	1km	50%
yos		Snow grain size of top layer		250m(scene), 1km (global)	50%
sphere	Surface propaties	Snow and ice albedo		1km	7%
		Snow impurity		250m(scene), 1km (global)	50%
		Ice sheet surface roughness	N/A	1km	0.05 (height/width)
	Boundary	Ice sheet boundary monitoring	N/A	250m	<500m

Research product note:

*15: Evaluate in semiarid regions (steppe climate etc.)

*16: Fires >1000K occupying >1/1000 on 1km pixel at night (using 2.2um of 1 km and thermal infrared channels)

<u>Global Ocean and Climate Change STM</u>

International Ocean Colour Coordinating Group

Category Scientific Questions*	Approach	Space Product Requirements	Space Measurement
CategoryScientific Questions*1What are the phytoplankton standing sto composition, & productivity of ocean eco How and why are marine ecosystems cha what changes are expected in the future? 	Approachusing space OC datausing space OC datavanify phytoplankton biomass, pigments, optical properties, key groups (functional/HABS), and productivity using bio-optical models & chlorophyll fluorescence. Quantify relationship between physiological state and bio-optical properties. Opt12Measure particulate and dissolved carbon pools, their characteristics and optical properties. Opt23Measure particulate and dissolved carbon pools, their characteristics and optical properties14Opt24Quantify ocean photobiochemical and photobiological processes24Photosynthesis5Cycles1Assimilate observations in ocean biogeochemical model fields of key properties (cf., air-sea CO2 fluxes, export, pH, etc.)34Model Comparison and wo do sess affect so cocean sise?35Compare observations with ground-based and model data of biological properties, land-ocean exchange in the coastal zone, physical properties (e.g., winds, SST, SSH, etc), and circulation (ML dynamics, horizontal divergence, etc)41Model Of atmos-ocean connet ion particulates, dissolved materials, and gases and (2) impacts on aerosol & cloud properties51Assess ocean radiant heating and feedbacks81Assess ocean radiant heating and feedbacks81If ecycles with bloom concentrations, timing and ing atxonomic composition.11Sonomic composition.11Sonomic composition.1<	Space Froundet Requirements Ikm spatial resolution grid Global 2-day coverage Level 2 and Lyvel 3 Level 2 and Lyvel 3 Derivel product: > Darived product: Chl (mg/m3) Chlorophyll concentration for case-1, case-2 and merged cases YSBPA (m-1) Yellow substance and bleached particle absorption adg? CDOM (g/m3) Colored dissolved organic matter TSM (g/m3) Total suspended matter Kd(490) diffuse attenuation coefficient at 490nm (m-1) PAR (µEin/m²) daily photosynthetic available radiation (about iPAR ?) Spectral irradiar a basorption coefficient (m-1) for b backscattering coefficient (m-1) FLH Fluorescence Line Height CFE Chlorophyll Fluorescence Efficiency PIC/POC Particle inorganic/organic carbon (moles/m3) Eutrophic depth (m) Secchi depth (m)	Space measurements Requirements Ocean Radiometer On •total radiances in UV, VIS, and NIR ex : 5 nm resolution from 350 to 755 nm 1000 – 1500 SNR for 15 nm aggregate bands UV & visible and 10 nm fluorescence bands (665, 678, 710, 748 nm) 10 to 40 nm width atmospheric correction bands at 748, 765, 820, 865, 1245, 1640, 2135 nm • total radiances in NIR and SWIR for both atmospheric correction and cloud assessment Requirements of In-situ sensors cee?
Quantitative assessment			

• Index for early caution

Additional products: PAR & SWR

Estimated using Aqua MODIS in Aug. 2009

Additional products: UVA & UVB

Estimated using Aqua MODIS in Aug. 2009