

In-flight Calibration Techniques Using Natural Targets

CNES Activities on Calibration of Space Sensors

<u>Bertrand Fougnie</u>, Patrice Henry (DCT/SI, CNES, Toulouse, France)

In-flight Calibration using Natural Targets

- Historically, methods using natural targets were developed in order to validate/adjust the pre-flight calibration of instruments
 - including sensors equipped with on-board calibration device
- Main aspects of in-flight calibration are :
 - absolute calibration : bias in interpretation
 - interband calibration : error on spectral ratio
 - multi-temporal calibration : error in temporal trends
 - multi-angular calibration : noise on synthesis
 - cross-calibration : biased analysis and comparison
- Methods using acquisitions over selected natural targets were developed to assess these aspects

In-flight Calibration using Natural Targets Calibration over Rayleigh Scattering

Calibration over Rayleigh Scattering : method

- Statistical approach over molecular scattering (Rayleigh) :
 - observe the atmosphere above ocean surface (= dark surface)
 - calibration from blue to red <u>443nm to 670nm</u>
 - contributions to the TOA signal
 - Rayleigh molecular scattering : accurately computed (SOS code)
 - main contributor : ~85/90% of the TOA signal
 - ocean surface : prediction through a climatology
 - no foam because of threshold on wind speed
 - aerosols : rejected using threshold + corrected
 - background residue using 865nm band + Maritime-98 model
 - ideal criteria : $\langle \tau a \rangle = 0.025$ and max(τa) = 0.05
 - gaseous absorption : O3 (TOMS), NO2 (climato), H20 (meteo)

	molecular	aerosol	marine	gaseous	I_mean
443	84.25	1.25	14.48	-0.56	0.1177
490	85.25	1.98	12.75	-1.84	0.0842
565	90.56	3.76	5.67	-8	0.04456
670	90.23	7.5	2.25	-3.67	0.02308

Main contributors to TOA reflectance (in %)

Rayleigh

- accuracy : typically 2% (3% in blue)

Calibration over Rayleigh Scattering : method

analysis over predefined and characterized oceanic sites

- selected sites for spatial homogeneity and limited seasonal variation
- benefit to calibrate over various oceanic sites
 - 1 site = still a small possible bias due to exact knowledge of ρw
 - statistical approach : distinguish sensor from sites behaviors

• ClimZOO :

Climatology of Oligotrophic Oceanic Zones

(from Fougnie et al., 2002)

 ClimZOO : Climatology of Oligotrophic Oceanic Zones – 9 years of SeaWiFS data 2 examples : very good sites in Northern and Southern hemispheres

1.1

1.0

0.95

0.8

-200

Calibration over Rayleigh Scattering : results

PARASOL 565 Ak=0.997 σ=0.014

670 Ak=0.999 σ=0.022

490 Ak=1.003 σ=0.011 Ak fonction de theta_v Ak fonction de theta_v Ak fonction de theta_v $vs \theta v$ $vs \theta v$ $vs \theta v$ 1.1 1.0 1.0 . . 0.9 0.9 0.0 0.0E 20 30 40 50 60 10 20 30 40 50 60 10 20 30 40 50 E() 10 Ak fonction de l'epaisseur optique aerosol Ak fonction de l'epaisseur optique aerosol Ak fonction de l'epaisseur optique aerosol 1.2E vs ta vs ta vs ta 1.1 1.15 1.1 1.0 1 1 1 1 0.9 0.9 0.9 0.8 0.0_ 0.00 0.02 0.06 0.02 0.04 0.06 0.08 0.04 80.0 0.00 0.00 0.06 0.02 0.04 Ak fonction de la longitude Ak fonction de la longitude Ak fonction de la longitude 1.2 vs lon vs lon vs lon 1.1 1.1 -1.1

0

0.9

20 -200

100

-100

0

100

(from Fougnie et al. 2007)

200

0.9

-100

CEOS-OCR-VC, Ispra, ¹⁰⁰/_{21st} October, 2010

- Absolute calibration for all the visible range
 - MERIS example from 412 to 670 nm (using 15,000 measurements in 2003) very good accordance with the official calibration

- Results being updated

Valuable for multi-temporal monitoring validation :

• Applicable for geostationary missions :

- Example with SEVIRI
 - For band 670nm
 - method extended for very large airmass (improved radiative transfer computation)

Propagation of the Rayleigh Scattering Calibration to NIR bands

Calibration over Sunglint (+Rayleigh)

2D sensor view

Pushbroom view

- Interband method
 - observe the "white" reflection of the sun over the ocean surface
 - inter-calibration of blue to SWIR bands (440 to 1600nm) with a reference band : red band (670) usually adopted as reference & calibrated over Rayleigh
 - accurate computation of the 2 main contributors :
 - Rayleigh scattering
 - sunglint strongly depend on the wind speed estimated using a reference band
 - both computed using Successive Order of Scattering code
 - use of a spectral refraction index of water (not constant) + Cox and Munk model
 - other minor contributions :
 - ocean surface : predicted using climatology
 - aerosol : threshold + correction
 - threshold using another viewing direction or exogenous data (SeaWiFS)
 - background correction considering Maritime-98 with aot of 0.05
 - gaseous absorption : O3 (TOMS), NO2 (climato), H20 (meteo)
 - dedicated selection

• Interband calibration efficiency :

- ex : MERIS calibration for NIR bands
- Dispersion very low for bands close to 620 (reference)

Results being updated
CEOS-OCR-VC, Ispra, 21st October, 2010

Interband calibration over sunglint : results

Multi-temporal survey :

- efficiency depending on sampling (geographic and temporal)

• Valuable for SWIR band calibration :

CENTRE NATIONAL D'ÉTUDES SPATIALES

In-flight Calibration using Natural Targets Calibration over Desert Sites

- This method use acquisitions over desert sites is used to
 - Cross-calibrate a sensor to a reference sensor
 - monitor multi-temporal evolution referring to this sensor
- Efficiency for wavelength inside the spectral range of the reference sensor, typically from 443 to 865nm
- Selection of the same acquisition geometry for both sensors
- Atmospheric correction include gaseous absorption but do not integrate aerosol correction (limitation in the blue)
- Accuracy
 - about 1% in multi-temporal (nearly 2% for blue bands)
 - better than 2% for cross-calibration (3% in blue band)
 - better when spectral bands of the 2 sensors are close
- limitation for sensor with band saturating over bright scene

- 20 desert sites were selected in North Africa and Arabia :
 - statistical analysis of Meteosat data (1y) completed by AVHRR data (1m)
 - sites are 100*100 km²
 - accessibility in term of cloud coverage
 - spatial uniformity : better than 2%
 - low directional effect : less than 15%

• Principle :

use of a reference sensor to simulate the TOA reflectance observed by the sensor of interest

Calibration over desert sites

Cross-calibration MERIS-MODIS (land bands)

Calibration over desert sites

• Validation of the MERIS calibration with time

Calibration over desert sites

• Validation of PARASOL calibration with time

– through the absolute reflectance over Lybia 3 for $\theta v=30^{\circ}$

Discussion - Conclusion

- Why deploy such calibration methods while a vicarious method adjusts [cal+atmosph-algo] at the end for OC applications?
 - CI = predicted radiance \rightarrow calibration method
 - MI = measured radiance \rightarrow radiometric model
- $A_k^{estime} = \frac{MI}{CI} = \frac{Ak.X}{CI}$ • A standard calibration method assumes that
 - the difference between MI and CI is only due to the A calibration

• To cross different methods provides a powerful diagnostic before the final vicarious adjustment

Références :

Fougnie et al., 2002, Identification and Characterization of Stable Homogeneous Oceanic Zones : Climatology and Impact on Inflight Calibration of Space Sensor over Rayleigh Scattering, *Ocean Optics XVI Proceedings*

- Fougnie et al., 2007, PARASOL In-flight Calibration and Performance, Applied Optics
- Fougnie et al., 2009, Monitoring of Radiometric Sensitivity Changes of Space Sensors Using Deep Convective Clouds Operational Application to PARASOL, *IEEE TGARS*,
- Fougnie B., 2010, Temporal Decrease of the PARASOL Radiometric Sensitivity : In-flight Characterization of the Multi-angular Aspect, *Earth Observing Systems XV*, SPIE Optics & Photonics
- Fougnie et al., 2010, Climatology of Oceanic Zones Suitable for In-flight Calibration of Space Sensors, *Earth Observing Systems XV*, SPIE Optics & Photonics

Hagolle et al., 2006, Meris User Meeting

Jolivet et al., 2009, In-flight Calibration of Seviri Solar Channels on board MSG Platforms, Eumetsat User Meeting Llido et al., 2010, Climatology of Oceanic Zones Suitable for In-flight Calibration of Space Sensors, Rapport d'étude CNES

Additional Slides

Potentiality for multi-angular calibration :

- Example with PARASOL

Evolution of the calibration in the field of view after 2 years in orbit for band 490

Calibration over Rayleigh Scattering

Calibration over Clouds

CEOS-OCR-VC, Ispra, 21st October, 2010

(from Fougnie et al. 2010)