

MERIS Cal/Val organization Towards Sentinel 3

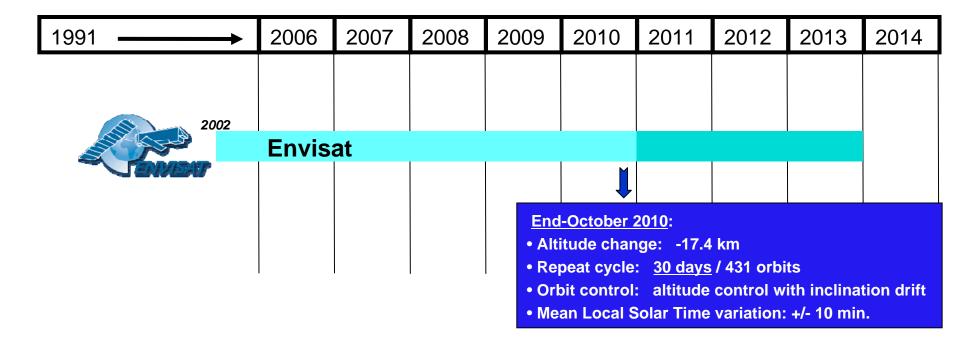
Philippe.Goryl@esa.int

- 1. ENVISAT/MERIS SENTINEL3/OLCI
- 2. Calibration principles reminder, Vicarious calibration verification
- 3. Validation organization
- 4. Mermaid
- 5. ODESA
- 6. Conclusion

ENVISAT

ENVISAT launch : March 2002

Envisat satellite is in good health \rightarrow MERIS instrument is in excellent shape.

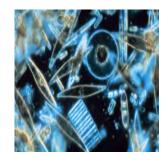

Efficient consumption of on-board hydrazine allow to operate <u>nominally</u> Envisat until 2010. But most of hydrazine will be consumed in 2010.

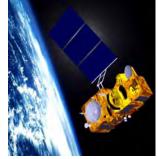
 \rightarrow ESA has elaborated a technical solution to further extend mission by 3 years, <u>i.e. until 2013</u>, based on a decrease of orbit altitude.

 \rightarrow the solution allows to carry on with the current Envisat applications, including MERIS applications.

Envisat Mission Extension (E2010+)

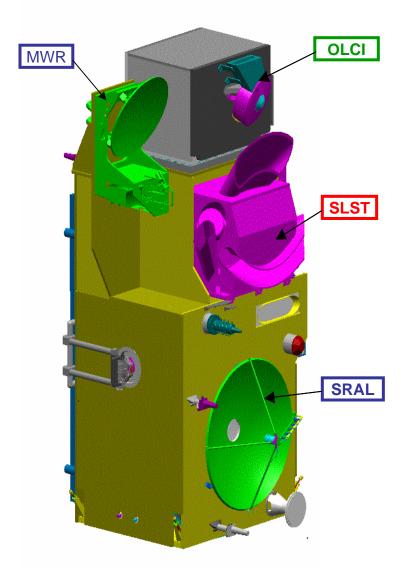
The new orbital parameters allow:


- 1. to keep current nominal mission until October 2010,
- 2. to extend the mission until end 2013,
- 3. to <u>allow operations of all instruments</u> with small or no degradation of their measurements, and minor impact on data quality, <u>except for SAR interferometry</u>
- 4. to commit with the satellite disposal rules.


Sentinel-3 overview

- Sentinel-3 is one element of the GMES system.
- Sentinel-3 is an operational mission for oceanography & global land applications.
- Provides continuity of existing missions, delivering:
 - -Sea/Land colour data (at least MERIS quality)
 - -Sea/Land surface temperature (at least AATSR quality)
 - -Sea surface topography data (at least Envisat RA quality)
- A series of satellites, each designed for a lifetime of 7 years, shall provide an operational service over 15 to 20 years
 - -Only 1 satellite is in development at this moment

→ Launch planned for 2013

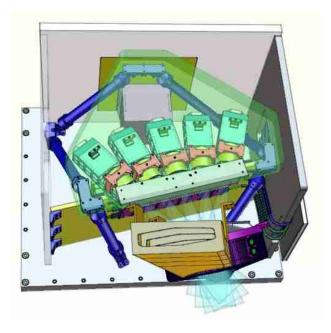


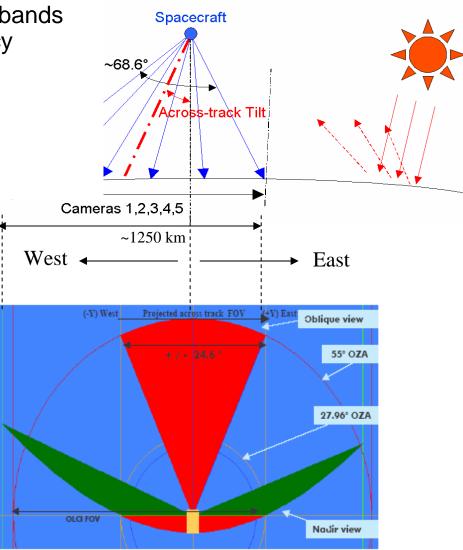
Sentinel-3 instruments

Instruments:

 Ocean and Land Colour Instrument (OLCI) with 5 cameras, 21 spectral bands
 Spatial sampling: 300m @ SSP
 → MERIS follow-on

•Sea and Land Surface Temperature (SLST) with 9 spectral bands, 0.5 (VIS, SWIR) to 1 km res (MWIR, TIR). Swath: 180rpm dual view scan, nadir & backwards → ATSR follow-on

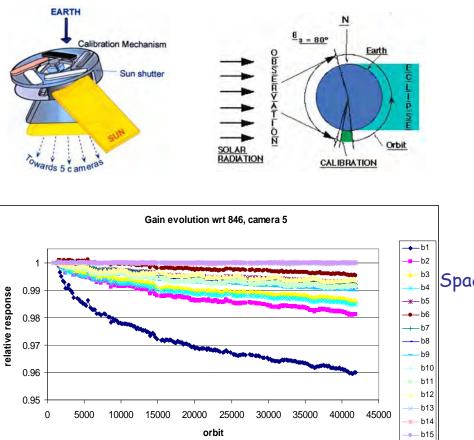

•Radar Altimeter package


SRAL Ku-C altimeter (LRM and SAR measurement modes), MWR, POD (with Laser Retro Reflector and DORIS)

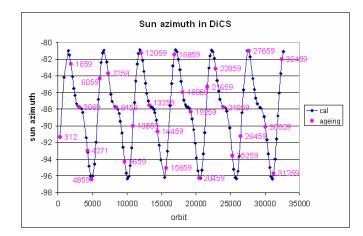
OLCI instrument

- Heritage from MERIS
- 5 cameras, 21 programmable spectral bands (incl. channels for MERIS & VGT legacy products)
- Sun Glint free configuration by design
- Across-track tilt = 12.20°
- Low polarisation < 1%
- Swath covered by SLST for atmospheric correction

Sentinel-3 mission orbit



Туре:	Sun-synchronous low earth orbit			
Repeat cycle:	27 days (14 + 7/27 orbits per day)			
Average altitude:	814.5 km over geoid			
Mean solar time:	10:00 at descending node			
Inclination:	98.65 ⁰			


		Revisit at Equator	Revisit for latitude >30°	Specificatio n	
Ocean Colour	1 Satellite	< 3.8 days	< 2.8 days		
(Sun-glint free)	2 Satellite	< 1.9 days	< 1.4 days	< 2 days	
Land Colour	1 Satellite	< 2.2 days	< 1.8 days		
	2 Satellite	< 1.1 day	< 0.9 day	< 2 days	
SLST dual	1 Satellite	< 1.8 days	< 1.5 days		
view	2 Satellite	< 0.9 day	< 0.8 day	< 4 days	

Level 1 radiometric calibration

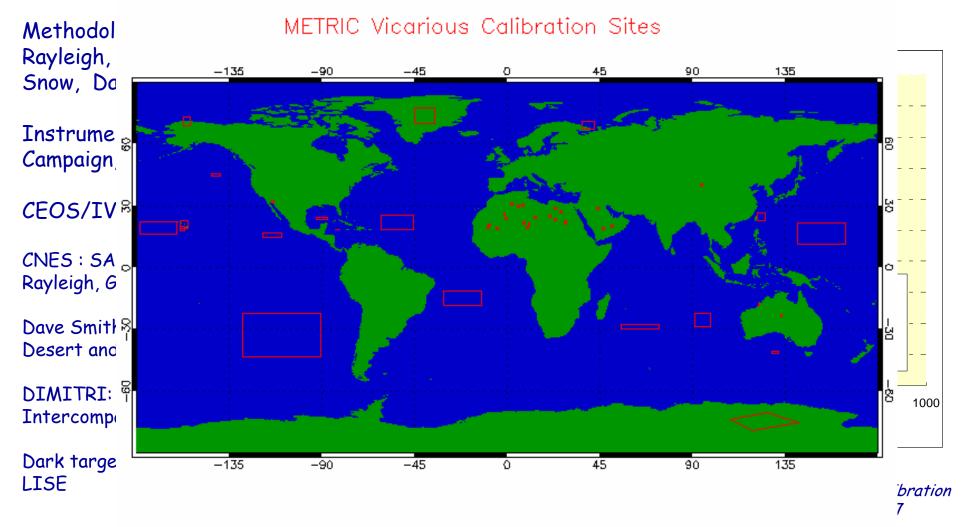
Like MERIS, OLCI performs on board radiometric calibration : • Every 2 weeks routine with 1st diffuser • Every 3 months with 2nd diffuser for ageing

Maximum degradation of 4 % after more than 8 years in space

Space environment implies **ageing** of Diffuser and Optics 2nd diffuser to monitor diffuser-1 BRDF ageing => Diffuser Aging model

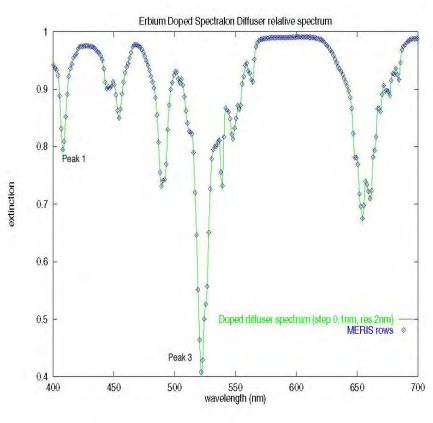
frequent calibration to monitor Instrument degradation

=> instrument degradation model

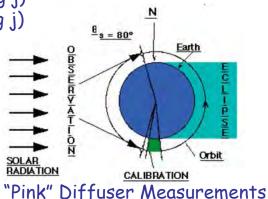

$$G(t) = G(t_0) \cdot \left(1 - \beta \cdot \left(1 - \gamma \cdot e^{-\vartheta t}\right)\right)$$

Degradation Model based on the SeaWifs model (Barnes et al.)

Level 1 radiometric vicarious verification Cesa

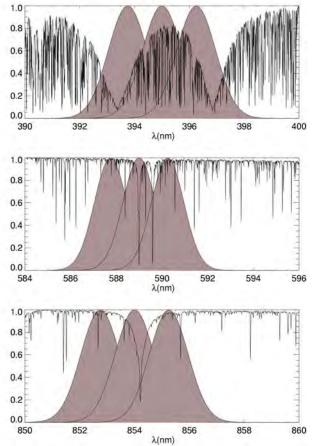

We have gained confidence in the absolute accuracy of the MERIS L1b radiometric calibration But Radiometric vicarious calibration is used to verify that:

- 1. the absolute radiometric level of L1b data is within the error bars of the methodologies.
- 2. no terr



Spectral calibration: Erbium Doped Diffuser esa

Acquisitions scenario: Orbit n = Diffuser-1 Cal (Band setting j) Orbit n+1 = Diffuser-Er (Band setting j)


Erbium absorption spectrum

centre	width (nm)	centre	width (nm)
400.625	1.25	514.375	1.25
401.875	1.25	515.625	1.25
403.125	1.25	516.875	1.25
404.375	1.25	518.125	1.25
405.625	1.25	519.375	1.25
406.875	1.25	520.625	1.25
408.125	1.25	521.875	1.25
409.375	1.25	523.125	1.25
410.625	1.25	524.375	1.25
411.875	1.25	525.625	1.25
413.125	1.25	526.875	1.25
414.375	1.25	528.125	1.25
415.625	1.25	529.375	1.25
416.875	1.25	530.625	1.25
418.125	1.25	531.875	1.25

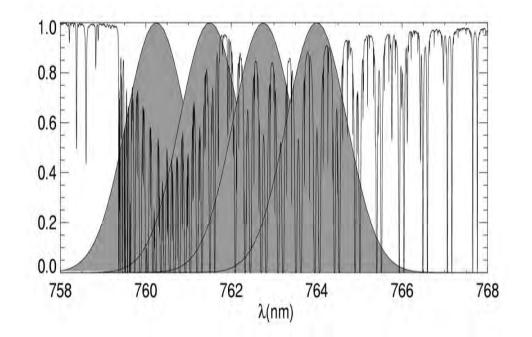
Band settings j

Spectral calibration: Fraunhofer Lines

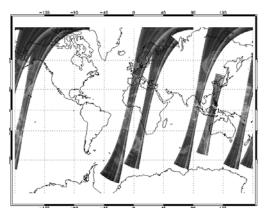
DESCLAR RADIATION

esa

White diffuser-1 measurement


Une 1 (393nm)	line 2 (485nm)	line 3 (588nm)	line.4 (655nm)	lige 5 (855nm)	line 6 (867nm)
393.125	480.625	584.375	653.125	850.625	663.125
394.375	481.875	585.625	654.375	851.875	864.375
395.625	483.125	586.875	655.625	853.125	665.625
396.875	484.375	588.125	656.875	854.375	866.875
398.125	485.625	589.375	658.125	855.625	868.125
390.375	486.875	590.625	659.375	856.875	869.375
400.625	488.125	591.875	660.625	858.125	870.625
	489.375	593.125			

Examples of Fraunhofer absorption spectrum With MERIS spectral response overlay


Band settings (3 configurations)

Spectral calibration: Oxygen O2A

For three orbits every six months, MERIS is configured to observe in detail the O2A absorption features

Oxygen O2A absorption spectrum MERIS spectral response overlay

sa

Measurements over Natural target

name	centre	width (nm)
blue-2	442.5	10
red-1	665	10
ref-1	753.125	6.25
02-0	758.125	1.25
02-1	759.375	1.25
02-2	760.625	1.25
02-3	761.875	1.25
02-4	763.125	1.25
02-5	764.375	1.25
02-6	765.625	1.25
02-7	766.875	1.25
02-8	768.125	1.25
02-9	769.375	1.25
ref-2	778.75	7.5
IR-1	865	10

O2A Campaign Band setting

The NIR pre-adjustment

Database for NIR gain computation

NIR investigation carried out on two oligotrophic areas of the world ocean: South Pacific Gyre South Indian Ocean.

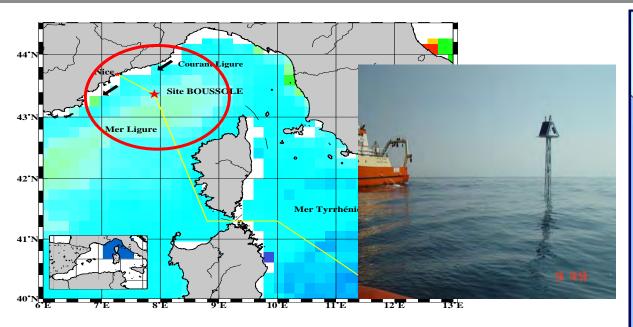
Database generated from 2003 to 2009

Procedure allow us to both improve the number and the quality of the matchups: data are extracted on the clearest pixels within a 10°x10° window over SIO and SPG 1794 matchups for SIO

1679 matchups for SPG (about 2 days out of 3)

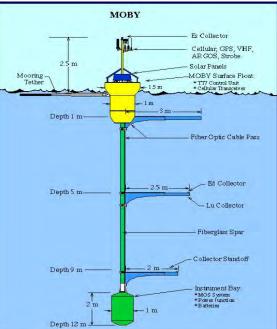
Selection criteria: 5x5 macro-pixel are selected if the

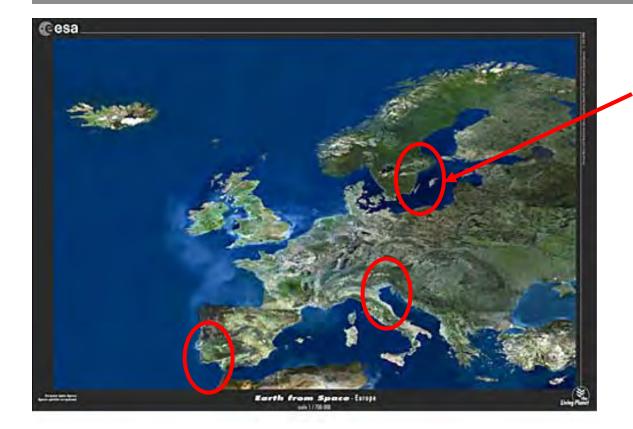
surrounding 15x15 macro pixel present none of the following flags cloud, ice haze or glint. solar zenith angle $<60^{\circ}$


wind speed <9m/s.

 \rightarrow around 1500 matchups for gain computatioon

Further pixel constraints for gain computation reject pcd_1_13, pcd_19, case2_s, no maritime aerosols, chl > 0.2mg/m3

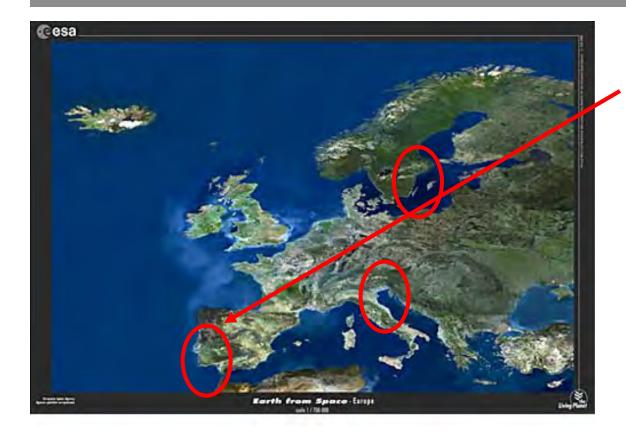

Adjustment in the visible


BOUSSOLE / MOBY used for:

- \rightarrow adjustment in the visible
 - \rightarrow Validation

PI: Susanne KratzerUniv. Stockolm

Anu Reinart, Tartu Observatory, Estonia


Swedish Aeronet:

SMHI, Norrköping 2007. It is one of the few high latitude AERONET stations.

CIMEL is converted into an AERONET-OC and deployed at Lake Vänern (spring 2008).

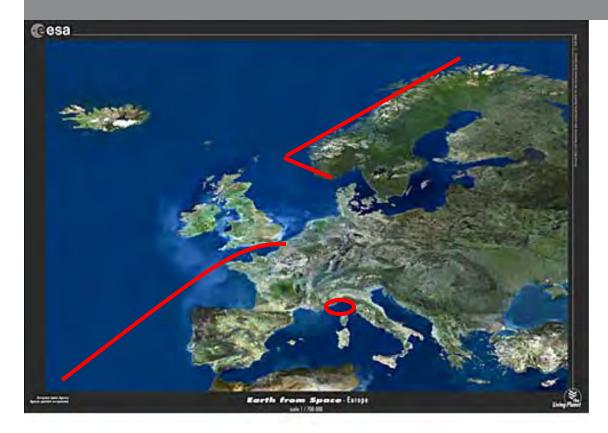
TriOS- RAMSES hyperspectral spectroradiometers Vänern and in immerfjärden.

Portugal Water:

hyperspectral radiometer with a pitch and roll sensor and a compass

sun photometer

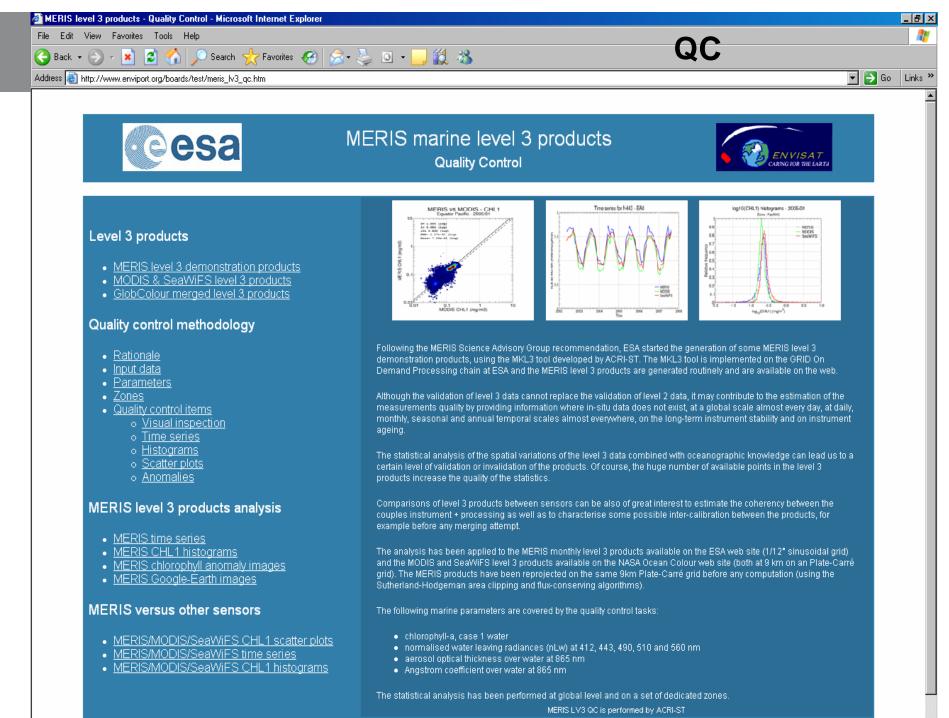
PI: John Icely – Sagremarisco, Algarve

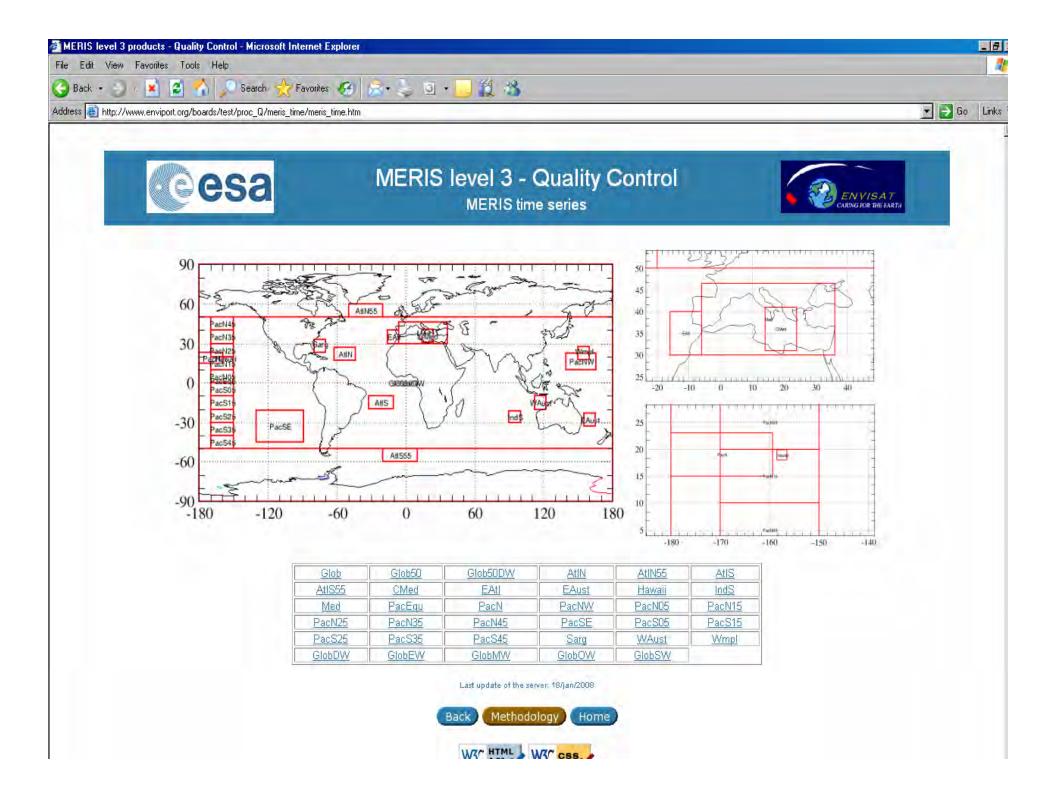


AAOT: Venice Tower

SeaPrism

PI: Giuseppe Zibordi - JRC

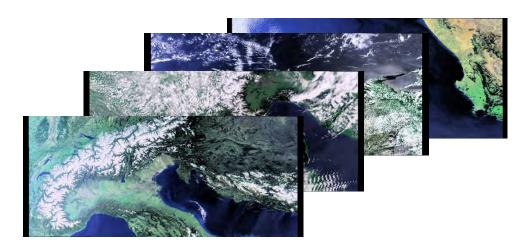



Ramses Trios – on ferries – Norway NIVA (Kai Sorensen)

Simbada (D.Ramon, P-Y Deschamps)

- + International cruise
- NATO Ligurain Sea
- Bencala cruise
- BIOSOPE (pacific)
- Aopex (west Med.)

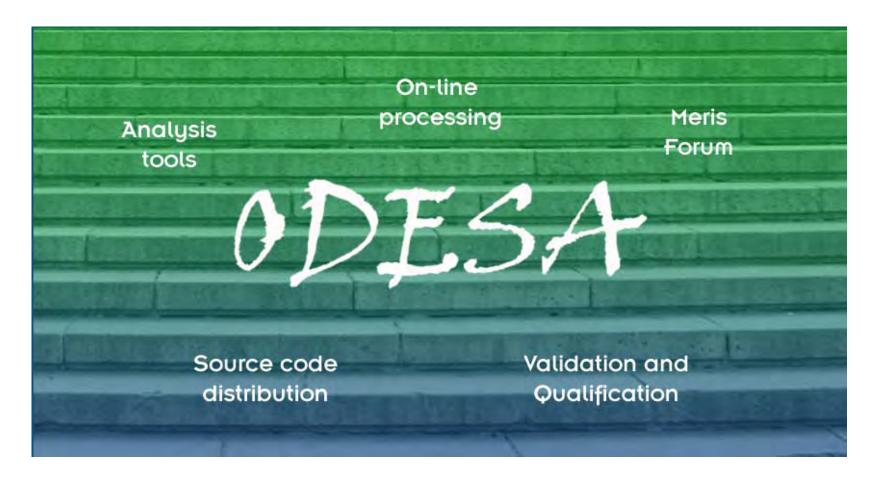
Last update of the server: 18/jan/2008



validation DataBase

MERMAID

- A centralised database of concurrent MERIS acquisitions and in-situ optical measurements (protected by a standard data policy)
- Available to Ocean Colour researchers working within the MERIS mission: MERIS QWG, MVT and any collaborating PI
- Accessible on the web with a simple interface and standard data format


Validation - MERMAID

→ MatchUp Database : MERMAID Mermaid 2010

- G. Zibordi: Abu Al Bukhoosh (53), Gustav Dalen Tower (99), Helsinki Lighthouse (89).
- J. Icely: Algarve (16)
- M. Ondrusek: Moby updated (472)
- S. Kratzer: NW Baltic Sea (39), Palgrunden (28)
- A. Hommersom: Wadden Sea (3)
- D. MacKee: Bristol-Irish Sea (29)
- G. Zibordi: new MERIS band-shifted matchups at AAOT (224 furnished after QC of 5064 potential measurements and less than 2 hours difference)
- D. Antoine: new Boussole data recently provided (566)
- J. Werdell: NOMADv2 instead of NOMAD (420 instead of 140)
- D. Vandemark: MVCO (192)
- \rightarrow 14 sites/missions with also SIMBADA (327).

Optical Data processor of ESA

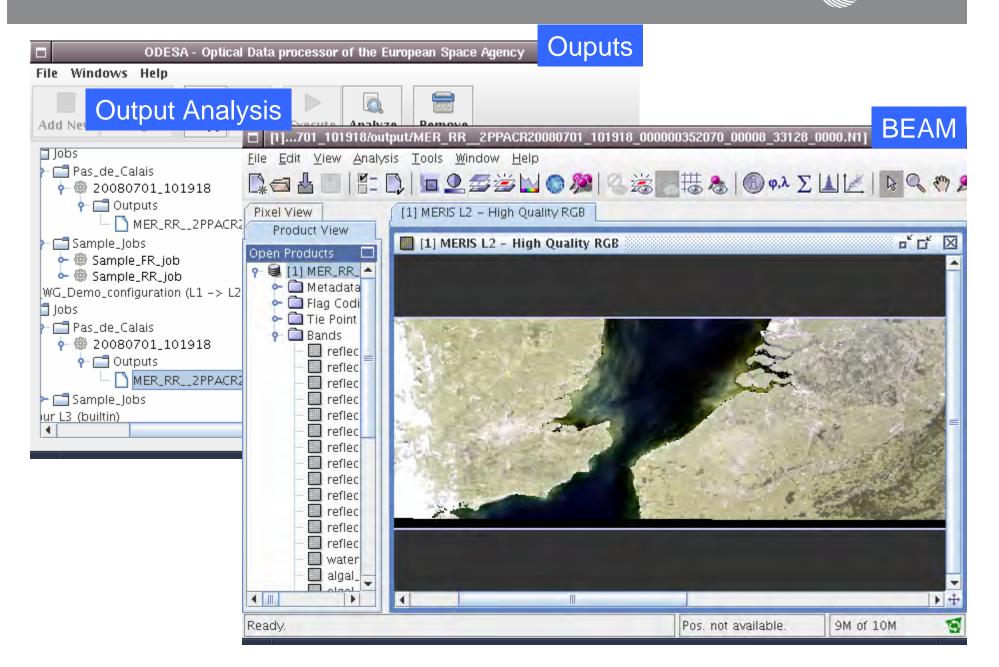
Goal: provide a "run and test" platform to MERIS user community

- ODESA L2/L3 code • distribution
- ODFSA on-line L2/L3 • processing
- ODESA forum •
- ODESA validation & • qualification
- Integrates BEAM as • analysis tool

C ees	6a Optical Data	processor	European Space Agency
SA Earthnet Online	e		
			25-Jun-2010
	a second and the second second		Related Links
1 . S	Optical Data processor of	the European Space Agency	MERIS demonstration level 3
2 34 1		o provide the users a complete level 2 he MERIS instrument as well as for the board Sentinel 3.	MERIS marine L3 QC MERMAID in-situ database
	development platform MEGS(nmunity with the MERIS Ground Segment B, including source code, embedded in an g and for validation activities.	Access to Ocean Colour data
Home About ODESA MERIS Online Processing Software Distribution	selection & analysis, level 3 p	atch-up processing & analysis, data set rroducts generation & analysis and the processing, e.g. for testing purpose and ing large amounts of data.	
Analysis Tools /alidation and Qualification Forum	MERIS on-line processing	Access MERIS data from remote processing facility available to qualified processors.	
Mailing list Services Site Map	 Software distribution 	Download the MERIS level 2 processor (MEGS®) and its operation environment	
FAQ Glossary Credits	Analysis tools	Download and install the ODESA analysis tools, including the BEAM toolbox	
Terms of use Contact us	Validation & qualification	Validate your algorithm and get him qualified to access the MERIS on-line processing	
	Forum	All you want to discuss about ODESA and MERIS	

Copyright 2000 - 2010 European Space Agency. All rights reserved

ODESA current web site <u>http://earth.eo.esa.int/odesa/</u>


- The source code is delivered within a Graphical User Interface dedicated to the management of configurations of simulations
- Draft version : currently available to QWG members
- 1st version (available to the public when the MERIS reprocessed data set is available):
 - MERIS processor (L1 to L2)
- 2nd version
 - GLOBCOLOUR processor (L2 to L3)
 - Processing of MERMAID matchups

ODESA MEGS Configuration management esa

	_	Conf	iguration Editor: Sample Nominal Configuration Configuration Editor: Sample Nominal Configurati	on Al		and difficient in
Name:	Name:		landaero_qwg.prd		ADF	modificatio
Mode:	Name.	Name:				
	Mode:	Mada	ADF Values Comment			
Processing Op	Due es estin e	Mode:		1		
	Processing	Processi	Name	Key	Unit	Value 🛱
🗹 Land Proce	🗾 Envisat		band index (starting at 1) numbers, for inland wat		dl	7, 13 🔺
	Elivisat		threshold for in-land waters screening spectral slo	S205	dl	1.0
		aeroci	threshold for island screening spectral slope test	S206	dl	1.0
	🗹 NetCDF	acroci	🗋 ta tabulated values at 550 nm	S208	dl	0.0, 0.1, 0.2, 0
			Gamma coefficient for ARVI computation	S209	dl	1.3
		atmos	🗋 Dta for iterative procedure	520A	dl	0.1
	Interi		effective radius tabulated values	520E	dl	0, 1, 2, 0, 1, 2,
		case1:	record number of the Multiplicative function to acc	S2 OF	dl	12, 13, 14, 12,
			📄 📄 optical thickness tabulated values for volcanic aero	. S20G	dl	0.1, 0.1, 0.1, 0
		case2:	865nm reflectance threshold for DDV screening	520H	dl	0.2
			665nm ground reflectance threshold for iterative a	. S2 0I	dl	0.2
		confm	List of band indices (starting from 1) to be used fo	S20J	dl	2, 7, -1
			💡 🗂 GADS Inland Waters and Islands Thresholds			
		cloud:	🗋 📄 a – constant applied to threshold for inland water	S300	dl	1.0
			📄 📄 a – constant applied to threshold for islands discri	S302	dl	0.375
		landae	Altitude threshold above which inland water screen	.5304	m	0.0
			💡 🗂 ADS Aer. Spherical Albedo			
		lv2cor	📍 🗂 Aerosol Spherical Albedo Sa(tA)	S600	dl	
			🗋 Table 1	S600	dl	0.0, 0.025386
	•	ocean	Table 2	S600	dl	0.0, 0.025774
		Table 2	5600	dl	0 0 0 026200	

ODESA - Results Analysis

esa

ODESA On-line processing & Validation

Conclusion

Calibration : on board calibration, vicarious technique for monitoring
 Validation network for MERIS in place based on:

- ✓ Buoys case 1 Moby Boussole
- ✓ Aeronet Ocean Colour Network + permanent instrumented sites
- ✓ Cruises
- ✓ Satellite Comparison
- MERMAID Central Tool for validation
- ODESA Environment for validation

Ideally MERIS program, methodologies, tools and infrastructure would need to be continued for OLCI:

BUT the set up is different:

- Sentinel operation is funded by European Commission
- Funding for the Sentinel exploitation phase is not yet established
- Eumetsat is in charged of the operation of OLCI marine part

Key issue and objective : continuity MERIS / OLCI