GOCI In-Orbit Test and Cal/Val Plan

Joo-Hyung RYU

Contribution from : KOSC colleaques

Oct. 21, 2010

Korea Ocean Satellite Center Korea Ocean Research & Development Institute

World' 1st GOCI/COMS Launch Campaign

- Launch Date : June 27 2010
- Launch Vehicle : Ariane-V (ESA)
 - Location : Kourou Space Center, French Guiana

A brief overview of GOCI

★ GOCI: Geostationary Ocean Color Imager
 ★ COMS : Communication Ocean and Meteorological Satellite

- \star It shall be operated in a **staring-frame capture** mode onboard its COMS.
- ★ The mission concept includes eight visible-to-near-infrared bands, 500 m spatial resolution, and a coverage region of 2,500*2,500 km centered at Korea.
- ★ The instrument is expected to provide SeaWiFS quality observations for a single study area with imager frequency of 1 hour from 9 am to 4 pm (8 times a day).
- ★ GOCI Application : LEO mission + Operational mission harmful algae bloom (HAB), health of marine ecosystem, movement of suspended sediment and current, and to produce marine fisheries information for fishing communities + ocean forecasting (with modeling)

GEO vs. LEO

	GEO/GOCI	LEO/SeaWiFS	
Altitude	35,857 km	705 km	about 50 times- far
Sensor type	Staring-frame capture	1-axis scanning	
Spatial resolution	500 m	1000 m	4 times better
Spectral range	400-900 nm	400-900 nm	Almost same
Temporal resolution	1 hour	1 day	8 times better
Sun-Satellite position	variable	stable	BRDF
Coverage	local	global	limitation
Bio-optical algorithm	local	global	New local algorithm

GEO is about 50 times farther from the Earth than LEO GEO spatial resolution is 4 times better than that of LEO GEO temporal resolution is 8 times better To be considered and prepared sensor type, geometry & local coverage for overcoming GEO characteristics

Issue 1 : Sensor type

GOCI uses the staring-frame capture method It takes 30 min to acquire one set of whole coverage Time interval is induced between upper and lower lines **The zigzag type of capture line brings about non-homogenous time interval**

In situ measurement were performed during a lot of cruises in the Korean terrestorial seas and neighboring waters through the years 1998-2010 onboard the KORDI research vessel and fisher boats.

Ferrybox

18 times during 4 years
Operation time : 19:00-10:00(next day)
Instruments : YSI(SS, chl, T, S, DO),
ChelSea(chl), SeaPoint(chl), McVan(SS)
Water sample : about 40 (every 20 min after departure) <SS>, <chl>, a_{dom}

Year	Month	Vessel
2001	5,7,8,9,10	Chunghaejin
2002	6,7,8,9,10	Chunghaejin
2003	5,7,9,10,11	Chunghaejin
2004	8,9,11	Ohamana

GOCI Data Processing System Analyzed data file Low level Accessory KOSC T Data file Data file Sub-routine Option LEVEL-0 **IMPS** Sector Imag Radiometric Calibration Calibration Coefficients LEVEL-1A Land **Digital val** Mask Geometrical **Correction & ASCII-Data** Image Cloud Mosaic Generation Display Mask LEVEL-1B Total **Turbid** water Mask <u>Atmospheric</u> Vate Correction New & old **GDPS** leaving model Radiance Lookup Directiona Reference Table Correction **Target SP** LwN (B1-B8) Data CASE-I&II & Fluor. Algorithm Fishing & Inherent 1-Band Absorption **Red-tide** Empirical **3-Bands** Image pattern Ground Optical Algorithm Algorithm Coefficient Index Algorithm Comparison algorithm Index Ŵ Ground **Under** water **Vater Currer** Atm. & Earth Properties Water Chlorophyll CDOM TSS **Red-Tide** Visibility Environment Vector Information Yellow Dust **K-coefficient** New model NOAA **Forest Fire** Absorption coeff. Image Inland flood Backscattering Coeff Water Quality Vegetation Index Level 1-5 Primary **Heavy snowfall** Productivity

GDPS GUI

GOCI coverage

→ GOCI coverage / Earth surface = 6,250,000 / 520,000,000 km² = 1.2 % (Considering the geographical size, coverage area is very small)

- → East Asia : South and North Korea, China, Japan, Russia, Taiwan
- Population : large (a heavily populated district)
- **Economy, Commerce : big (container traffic)**
- **Defense**, Military : important
- **C** Environments : variable, changeable
- **Climate change : serious**

Issue 3 : No international Cal/Val site

Issues on GOCI

Problems

- Staring-capture frame : slot radiometric correction
- Geometry variation and local coverage : BRDF correction, new local algorithm
- No international Cal/Val site : new one

□ Solutions :

- to understand geometry and make radiometric, BRDF and atmospheric corrections
- to understand optical properties of the Seas around Korean peninsula
- to develop new bio-optical algorithms suitable for complex optical properties considering Case-1/2 waters
- to make and update GOCI Data Processing System (GDPS)
- to continuously do Cal/Val by using all kind of methods

GOCI IOT (during 6 months) items and result

GOCI HW all functional test : KARI & ASTRIUM

Solar power, activators, system vibration and stability
 Orbit & attitude control, Temperature trend/Parts
 Data transmission, Telemetric control….
 All Optical, mechanical & electronic problems
 => is done by KARI, All GOCI Sub-systems are fully operational

Ground test

- S/N, MTF(are on going) , wavelength, band registration, polarization…..
- Image pre-processing test : KARI & KORDI

 Radiometric calibration :
 initial value(lab test), updated with value obtained by space using solar diffuser
 Image Mosaic function
 Geometric calibration

 Image post processing (GDPS) test : KORDI

 Atmospheric correction
 BRDF correction (underwater algorithms)

Initial Test Result of GOCI

GOCI Radiance Restitution Process •

- 2010. 08. 01 - Band 01

GOCI Level 0

Offset Correction

GOCI Dark current Image

GOCI Radiance Restitution for Level 1A

GOCI Gain Image

GOCI IOT / HW

GOCI Sensor Status and Performance Tests All GOCI Sub-systems are fully operational.

Functional test		IEU A	T start	T end	Status	IEU B	T start	Tend	Status
Stand-By + Thermal	GOCI_01	13/07/2010	00:05:00	00:54:00	OK	15/07/2010	00:21:00	01:06:00	OK
Mechanism activation	GOCI_02	13/07/2010	00:56:00	03:13:00	OK	15/07/2010	00:56:00	03:41:00	OK
Reference positionning	GOCI_03	13/07/2010	03:32:00	04:03:00	OK	15/07/2010	03:45:00	04:12:00	OK
Imaging in darkness	GOCI_04	13/07/2010	04:05:00	05:14:00	OK	15/07/2010	04:50:00	05:28:00	OK
Complete image	GOCI_05	13/07/2010	06:15:00	06:45:00	OK	15/07/2010	06:15:00	06:45:00	OK
Thermal during night	GOCI_06			13/07/20	10 to 16	/07/2010			OK
Duration	GOCI_DUR	13/07/2010	06:15:00	06:45:00	OK	15/07/2010	06:15:00	06:45:00	OK
Performance test		IEU A	T start	Tend	Status	IEU B	T start	Tend	Status
Dark signal & Noise	GOCI_DRK	13/07/2010	07:40:00	08:40:00	OK	15/07/2010	07:40:00	08:40:00	OK
Dadianaa kaananaa	GOCI_RRF 1&2	16/07/2010	13:25:00	14:10:00	OK	NA.			-
Radiance response	GOCI_RRF 3&4	17/07/2010	13:25:00	14:10:00	OK	NA			
Colibration	GOCI_CAL S1	18/07/2010	13:25:00	14:10:00	OK	20/07/2010	13:25:00	14:10:00	OK
Calibration	GOCI_CAL S2	19/07/2010	13:25:00	14:10:00	OK	21/07/2010	13:25:00	14:10:00	OK
DAMD Acquisitions	GOCI_DAMD	22/07/2010	13:25:00	14:10:00	OK	NA.			
DAMD Acquisitions	GOCI_DAMD	23/07/2010	13:25:00	14:10:00	OK		NA.	(managed)	
Parameter set	GOCI_PAR	13/07/2010	06:15:00	06:45:00	OK	15/07/2010	06:15:00	06:45:00	OK
Radiometric stability	GOCI_STAB								
MTF	GOCI_MTF	INRSM			INRSM				
GOCI SNR	GOCI_SNR						-		
Coverage	GOCI_COV	INRSM			INRSM				
Duration	GOCI_DUR	13/07/2010	06:15:00	06:45:00	OK	15/07/2010	06:15:00	06:45:00	OK
Ground sampling distance	GOCLESD	INRSM			1	NA.			
Overlap	GOCLOVP	INRSM INRSM				-			
Focal Plane parameter	GOCI FPP	22/07/2009	01:15:00	01:45:00		NA			

GOCI slots images

Between Slot Radiometric discrepancy <4%

Bright difference between Upper & low slots We don't know exactly this mechanism yet.

- Solar elevation angle change?
- Stray light effect ?
 - * Time interval between adjacent 2 slot : 2min

=> Impact in Level-2 data production

GDPS test

- Preliminary L2 Generation Performance Check
 - Source code level analysis is performed to improve the reliability.
 - Level-2 timeliness is satisfied less than 20 -30min.
 - Cloud/land mask, atmospheric algorithm. underwater algorithms are inspected.
 - We have found some errors & are under the correction and improving in many parts.

Item	Implementation Error Summary	Current Sta us
SSMM atmos correction	 No land mask before correction The characteristics of GOCI is not reflected in the parameter f ile from the it of SeaWiFS. 	Fixed
BRDF algorithm	- BF factor for band 7,8 was not demonstrated.	To be fix
SGCA algorithm	-The standard time to calc solar angle was different between S GCA and SSMM. -Insert fill value as basis number.	Fixed
Remote sensing reflectance(Rrs)	- Using wrong solar irradiance for each band.	Freed
IOP Analysis	-Equation implementation error. -Analysis for valid band	Fixed
Kd490	- Equation implementation error. - trigonometrically miscalculation by degree unit-> radian unit	Fixed
Chlorophyll concentration	No issue	
Total suspended sediment	No issue	
Disolved organic matter	No issue	
Visibility(horizontal)	No issue	
Red-tide Index	No issue but its algorithm is depend on 1 band.	comment
Water current vector	No issue	
Fishing Ground Index	No issue	
Water Quality Grade Index	No issue	

Source Error Summary

L2 Cloud Land Mask

L2 CHL Band Ratio

Yellow : land Blue : sea Gray : Cloud

GOCI Image quality

Image Comparison between GOCI and MODIS Aqua

 Yangtze River, China (GOCI, 20100731)
 Yangtze River, China (MODIS Aqua, 20100731)

 R: 660 G: 555 B:490
 R: 645 G: 555 B:469

GOCI July 13, 2010 Japan

GOCI IOT Discussion

- Fully successful launch campaign of GOCI/COMS
- All functional tests for GOCI was successful.
- GOCI IOT for geometric performance verification is on-going
- Slot level radiometric discrepancy has been found during inorbit test
- We need more fine tuning of all algorithms
- GDPS Should be corrected/improved in some parts. (Atmospheric correction, BRDF, under water algorithms)

Cal/Val plan

in situ measurements

- Research vessel, Ferrybox(with KORDI), Glider(with KORDI)
- Buoy, Ocean research station :
 - To use Korea Operational Oceanography Network(with KORDI)
 - To cooperate neighboring countries (with Japan, China, Taiwan)
 - To join International Group (with IOCCG, OCR-VS, Aeronet-OC)

Inter-satellite Cal.

Existing OC : MODIS, MERIS
HICO (with D. Curtiss)

New system

- * Kite, aerostat, airborne (with KARI)
- Argo-type buoy
- Uniform land Cal/Val site
 - Desert, Ice, Playa

Two buoys and two ocean stations have already been constructed by KOON

Korea Operational Oceanography Network

leodo Station (2003)	 Case-1/2 Depth: 41m 33 instruments 	 Satlantic HyperSAS 2003-2004 Managed by Government Office
Gageocho Station (2009)	 Case-1/2 Depth : 15m 31 instruments 	 Aeronet-OC(2011) TriOS(2010) : broken Fluorometry(2010) Turbidimeter(2010)
Dokdo station (2012)	 Case-1 2012 (plan) 	 Aeronet-OC(2013) Fluorometry(2013) Turbidimeter(2013)
Yellow Sea buoy (2007)	 Case-1/2 Depth: 80m Diameter: 10m Weight: 50ton 	FluorometryTurbidimeter
Dokdo buoy (2009)	Case-1Depth : 300m	• Fluorometry : lost

These systems are not for remote sensing only

leodo Ocean Research Station

- Meteorological Instruments (13)
- Environment Observing Systems (6)
- Ocean Monitoring Systems (22)
 - Spectroradiometer
 - Wave radar
 - **Directional Waverider**
 - Self Contained Ultrasonic Sensors
 - Sea Level Monitor
 - **Acoustic Doppler Velocimeter**
 - ADCP
 - CTD
 - CTR7

etc.

- Ultraviolet Fluorometer
- Chlorophyll Fluorometer
 - Current Profiler
 - Ultrasonic Level Meter

Ieodo station is managed by NORI (Government offfice) KORDI : design, construction, installation, test NORI : operational work

Satlantic HyperSAS OCR-3000

Comparison between HyperSAS and SeaWiFS water-leaving radiance in each band

All visible bands were well correlated with SeaWiFS excepted at longer wavelengths

Gageocho Ocean Research Station

26m

Meteorological Instruments (12)

Environment Observing Systems (7)

- Ocean Monitoring Systems (12)
 - ► TriOS (installed on Jul. 6, 2010)

: taken as 1-min acquisition sequences every 15min from 8 am to 5 pm

Aeronet-OC (will be installed at 2011)

TriOS data (Jul.-Aug. : rainy season)

Yellow Sea Buoy

Re-mooring on Aug. 7, 2010 Real-time measurements for Chlorophyll-a, Turbidity

Eocheongdo Buoy : test system(temporal)

1. Mooring around Eocheongdo on Jun. 28, 2010 2. Real-time measurements of Chlorophyll-a, Turbidity, CDOM (Chelsea Inc.)

Cross Calibration with LEO Ocean Color Sensors Comparison of Spectral Channels

SeaWiFS	MODIS	GOCI	HICO	MERIS	Application
	411nm	412 nm	Hyperspectr	412.5 nm	CDOM
443 nm	442 nm	443 nm	380 -1000	442.5 nm	chlorophyll
	487 nm	490 nm	nm at 5.2 nm	490 nm	Chl and other pigments
520 nm	530 nm		Can match	510 nm	turbidity
550 nm	547 nm	555 nm	Any GOCI	560 nm	Chl, suspended sediments
			channel	620 nm	Suspended sediments
670 nm	665 nm	660 nm		665 nm	Chl absorption
	677 nm	680 nm		681.25 nm	Chl fluorescence
				705 nm	Blooms, Red edge
750	746 nm	745 nm		753.75 nm	O ₂ abs. ref., ocean
Beyond				760 nm	$\Theta_2^{\text{erosols}}$
Planned				775 nm	Aerosols, vegetation
Lifetime.	866 nm	865 nm		865 nm	Aerosols over the ocean
Little				890 nm	Water vapor reference
data					
In 2008				900 nm	Water vapor absorption

By D. Curtiss

Inter-satellite Cal: GOCI vs. HICO (by D. Curtiss)

HICO Image Pusan, South Korea: Nov.18, 2009

Fer	rybox	(Contain	er ship box)
Hanjin Co.	2,821to n 4,538to n	Length; 93.3m Width; 15.6m Draft; 5.60m Speed; 11 knot	Incheon→Kwangyang→ Pusan→Incheon

GOCI Cal/Val Discussion

- No international OC Cal/Val site in GOCI coverage
 - Indirect method : Inter-satellite Cal
- Existing sites need to be stabilize for GOCI Cal/Val
 - Our efforts (with KORDI)
 - Supporting of International groups
- AERONET-OC site selection : Gageocho Station (with TriOS)
 - Already registered to NASA
 - "Once started, termination is irreversible" from David Antoine
- No land Cal/Val site in GOCI coverage
 - No desert, ice, playa : uniform, wide, long term-radiometric stability
 - Tidal flat (if possible) : uniform(except SMC), wide
- Hope to show you quantitative results in near future

Planed GOCI Data Distribution at KOSC

Korea Ocean Satellite Center - Windows Internet Explo Coo + E http://kosc.kordi.re.kr/index.kosc + 4+ × Daun 파일(E) 편집(E) 보기(V) 즐겨찾기(A) 도구(E) 도움말(U) (@) 알툴바 • 🐱 빠른검색 🏓 알패스on 🎓 즐겨찾기on 🎁 11번가 🛅 첩쳐 • 🎸 🔛 🕂 🥥 문자 🤢 🐻 🚱 지마켓 🛛 🏟 🔤 메일 • 🥅 뉴스 • 🎑 금융 • 📴 11번가 🗈 지도 • 🧀 날씨 • 12 Korea Ocean Satellite Cente 페이지만 • 💮 도구(0) • Ocean Satellite Data Service Korea Ocean Satellite Center IOAA I OGI Ocean Satellite Image GOCT IMAGES Processed by KOSC(Korea Ocea. 2010-10-08 GOCI L1B Color Com. 2010-10-0 GOCIL1B Color Co NOTICE ·HORE Information is not retrieved GOCI_20100715_L1A_Mosaic_Color Composit 2010-07-15 15 16 **KOSC Statistical Data** GDPS Articles : 2 Item(s)
 Research : 1 Item(s) Satellite Image GOCI/COMS: 41 Item(s) SeaWIFS: 2 Item(s) MODIS: 0.Item(s) NOAA: 2 Item(s) 한국학술진흥재단 KC 한국해양학위원회 FAQ (Deserver, 대덕연구개발특구 자주 묻는 질문입니다 비양위성센티관련 질문과 답변입니다 KOSZ Privacy Policy | Contact Us | KOSC Project | Sitemap Copyright (c) Korea Ocean Satellite Center, All right Reserve Powered by KORDI KORDI

Developed GOCI Public Website at KOSC using published and approved for distribution data, publications and presentations.

KOSC GOCI Web site would be portal for data requests and distribution

 Data requests require proposal and data agreement signed by the requestor and their institution and approved by MLTM.

http://kosc.kordi.re.kr

Thank you