Calibration Techniques for NASA’s Remote Sensing Ocean Color Sensors

Gerhard Meister, Gene Eplee, Bryan Franz, Sean Bailey, Chuck McClain

NASA Code 614.2
Ocean Biology Processing Group

October 21st, 2010

Ocean Color Radiometry Virtual Constellation Workshop, Ispra, Italy
Ocean Biology Processing Group:

- NASA Code 614.2, Ocean Sciences Research, Hydrospheric and Biospheric Sciences Research, Goddard Space Flight Center
- Responsible for producing Ocean Color (OC) products at NASA (CZCS, SeaWiFS, MODIS Aqua and Terra, MERIS, etc.)
- Website: oceancolor.gsfc.nasa.gov
Mission Feedback
- Science community input (ESA CCI)
- Comparison with other appropriate products
- New Missions (Sentinel 3 OLCI, OCM-2)
- Protocol development

Improved Products & Algorithms
- Reprocessing due to improvements in calibration, masks, binning schemes, product compatibilities, etc. (ESA CCI; ISRO-NASA-NOAA JST)
- New products from bio-geochemical fields, atmospheric fields, etc.
- Data distribution interface

SeaDAS, ODESA, BEAM...
- Satellite data processing software (ACE, OCM-2, MERIS, OLCI, SGLI, GOCI, ...)

Satellite Data from Calibrated Sensors (2010)

Product & Algorithm Validation
- Atmospheric & bio-optical algorithm validation development (INSITU-OCR PIs, office staff, ESA CCI OC)
- Match-up analysis via Aeronet-OC sites, satellite QC, time series evaluation, Bio-Argo, ChloroGIN, etc.
- Earth System/Climate Model data assimilation

Calibration Strategy
Prelaunch
- Lab. characterization & calibration (SI-traceable)
- Solar calibration (transfer-to-orbit)

Postlaunch (operational adjustments)
- Solar calibration (daily)
- Lunar calibration (monthly)
- Multiple sites L_{wn} time series for vicarious calibration – (ISRO Arabian Sea Kavaratti; NOAA’s MOBY-C)

In Situ Data
- Collection of required bio-optical and atmospheric measurements (INSITU-OCR PIs; ESA Aero. N. Africa)
- *in situ* instrument calibration (Project round robin SI-traceable, IOPs, AOPs; ESA Radiance Project)
- Data collection following NASA Ocean Optics protocols (ISRO Kavaratti)
- Archive of calibrated QC *in situ* data (NASA SeaBASS)
- Calibrated instrument pool
- Develop new instrumentation
Overview of calibration techniques:

- Lunar calibration
- Solar diffuser calibration
- Striping corrections
- Crosscalibration to other sensors
- Vicarious calibration
Lunar calibration:

Advantages:
- Reflectance stability (0.1-0.3%, limited by sensor)
- Low cost
- Available for all OC wavelengths

Disadvantages:
- Radiance variations (ROLO model)
- Brighter than typical OC radiances (MODIS saturates in red/NIR)
- Small source, →
 - size of source effects
 - FOV only partially illuminated in some sensor designs
 - single measurements are noisy, long time series required
- Uncertainty of absolute calibration rather high (>5%)
- Viewing geometry (requires maneuvers and oversampling correction for most sensors)
Lunar images may be oversampled:

MODIS band 1: (image from presentation by J. Butler)

SeaWiFS:
Lunar calibration: SeaWiFS

SeaWiFS measured lunar irradiances:

SeaWiFS gain drift:

Fig. created by G. Eplee, OBPG
Solar diffuser calibration:

Advantages:
- Easy to fill iFOV
- Moderate cost
- Available for all OC wavelengths
- Low noise

Disadvantages:
- On-orbit reflectance degradation
- Brighter than typical OC radiances in VIS and NIR (MODIS uses screen, which introduces additional problems)
- Adds complexity to sensor design
- BRDF needs to be well characterized and monitored
- Viewing the solar diffuser at different angles for different sensor elements may lead to striping (MODIS)
Solar diffuser calibration:

- Main problem is SD reflectance stability
- MODIS uses separate sensor (Solar Diffuser Stability Monitor, SDSM) to look at SD and at sun directly (through screen)
- Results insufficient for short wavelengths after long SD exposure to solar radiation
- MERIS approach of using two SD (keeping one protected most of the time) may be superior
Striping correction:

- Very small calibration inaccuracies of different sensor elements (detectors, mirror sides, cameras) can lead to noticeable striping in OC products
- Uses assumption that adjacent pixels have identical global average water-leaving radiances
- SeaWiFS needs a mirror side correction (about 0.1%), MODIS Aqua and Terra need detector and mirror side corrections (very large for MODIS Terra)
Residuals of TOA and lunar analysis:

Stars: lunar, blue/red diamonds: TOA MS 1/2
MODIS Aqua nLw 412nm, before correction:

After correction:
Crosscalibration:

- Uses truth field of water-leaving radiances from another sensor
- Propagates L3 truth data to TOA for viewing and solar geometry of sensor whose radiometric properties (gain and polarization) are adjusted as a function of scan angle
- Corrections for MODIS Terra and Aqua result in very consistent global time series for all sensors
- Polarization change for MODIS Terra has been dramatic at 412nm and 443nm, MODIS Terra OC products are unusable without crosscalibration
- Technique may prove beneficial for merging datasets from different sensors (e.g. MODIS Aqua and MERIS)
Modeling of TOA Stokes vector over oceans

\[
L_t(\lambda) = \left[L_r(\lambda) + L^a(\lambda) + tL_f(\lambda) + TL_g(\lambda) + t_d(\lambda)L^w_g(\lambda) \right] \cdot t_g(\lambda)
\]

\[
\begin{bmatrix}
L_t \\
Q_t \\
U_t \\
O_t
\end{bmatrix}
\]

from MODIS NIR
assumes MCST NIR band characterization

\lambda' \rightarrow \lambda

fit based on bio-optical models

SeaWiFS
4-day mean

L^{wn}(\lambda')
Crosscalibration approach:

\[\frac{L_m}{M_{11}} = L_t + m_{12} * Q_t + m_{13} * U_t \]

\(L_m \): measured TOA radiance (MODIS)
\(L_t \): true TOA radiance (from SeaWiFS)
\(Q, U \): linear Stokes vector components, modeled from Rayleigh and glint
\(M_{11}, m_{12}, m_{13} \): fitted instrument characterization parameters (depend on band, MS, detector, scan angle)
MODIS Terra radiometric gain corrections as a function of time at different view angles:

412nm: Gain at lunar view is stable
Gain at solar diffuser view changes by >6%

Color coding: Frames (pixels) 22 675 989, 1250 (out of 1354)
Solid line is a fit to the measurements of each month (diamonds)

Significant corrections in the blue (up to 10% at 412nm (band 8)), very small corrections for the red (band 13 at 667nm)
MODIS Terra polarization sensitivity as a function of time at different view angles:

443nm: significant corrections to the polarization sensitivity, twice as large for mirror side 2 versus mirror side 1

Color coding: Frames (pixels) 22 675 989, 1250 (out of 1354)

Polarization sensitivity is highest for 412nm, decreases with wavelength
MODIS-Terra and MODIS-Aqua nLw

Before crosscalibration:

After crosscalibration:
Vicarious Calibration:

- NIR 870nm band: no adjustment to calibration (error mitigated by 750nm band calibration)
- NIR 750nm band: assuming maritime aerosol model (r70f10v01) in South Pacific
- VIS bands: MOBY at Hawaii
- Strict quality control
- Also applied after crosscalibration
- Advantage: calibrates both sensor and atmospheric correction algorithm, forces results to agree with in-situ measurements (most OC product algorithms are empirical fits to in-situ data)
Summary:

- Lunar trending is the most reliable calibration approach to produce climate data records for ocean color products, but requires long time series.
- Solar diffuser calibration superior for short term gain variations and calibration of sensor elements relative to each other.
- Crosscalibration is a powerful method to correct even severe instrument issues, but relies on truth sensor (only use when needed).