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Preface 
 

Historically, remote sensing of ocean color was focused on the retrieval of chlorophyll concentration 
in the global oceans. Recent studies, as synoptically outlined in the Report 3 of the International Ocean-
Colour Coordinating Group (IOCCG), have emphasized the importance of understanding and retrieving 
inherent optical property (IOP) in ocean color remote sensing. As a follow up, this report promotes the 
research and applications of IOPs.  

IOPs are at the center of satellite measured water-leaving radiance and water constituents. At the 
same time, variations of IOPs are clear indications of changes of water mass or water constituents. 
Following these basic concepts, significant progress has been achieved in the past decade regarding 
remote sensing algorithms for IOPs and applications of IOPs in oceanographic studies. In an endeavour to 
emphasize IOPs in ocean optics and in ocean color remote sensing, this report summarizes the progress to 
date. It lays out the fundamental relationships between water-leaving radiance and IOPs (Chapter 1), 
establishes a data base for algorithm testing and evaluation (Chapter 2), and provides a discussion of 
sources of uncertainty (Chapter 3).  

This report also presents a series of commonly encountered algorithms in remote sensing practices 
and their performances when applied to compiled synthetic and in situ data sets (Chapter 4 – Chapter 12). 
These are presented in such a fashion that sufficient details are included for easy inter-comparison among 
the algorithms and easy utilization by interested researchers. The ocean-color community has 
accomplished a lot by developing algorithms for ocean color remote sensing. What is lacking, however, 
are broad-range tests, validations, and inter-comparisons. This report provides initial results in this regard. 
It should be pointed out that algorithm development is a continuous process, and this report by no means 
attempts to include all the algorithms developed, or under development, in the community.  

The report ends with examples of IOP applications in oceanographic studies (Chapter 13) and a 
summary and conclusions (Chapter 14). This report may never have become a reality without the support 
from the IOCCG Committee, and the diligent work of the “Algorithm Working Group”. In particular, 
Z.P.L. wishes to extend his great appreciations to the series editor, Dr. Venetia Stuart, for her enormous 
assistance during the whole process. 
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Chapter 1. Why are Inherent Optical Properties Needed in Ocean Color Remote Sensing? 
J. Ronald V. Zaneveld, Andrew Barnard, and ZhongPing Lee 

1.1 Introduction 
In this volume we are interested in the determination of useful oceanographic parameters from the 

radiance measured by a satellite based sensor. The measured radiance originates from sunlight that passes 
through the atmosphere, is reflected, absorbed, and scattered by constituents in the ocean, and is 
transmitted back through the atmosphere to the satellite based sensor. Solar photons that reach the sea 
surface are redistributed from those that reached the top of the atmosphere. Absorption of the aerosols and 
gases changes the intensity, and scattering changes the intensity as well as the directionality, resulting in 
diffuse light that is a function of wavelength. The directional slope spectrum of the waves at the sea 
surface together with the radiance distribution determine the reflected radiance. In addition to the waves, 
white caps, bubbles, and surface slicks also affect the redistribution of light entering the ocean. 

The processes of scattering and absorption by dissolved and suspended materials in the ocean affect 
the spectrum and radiance distribution (light field) of the light emerging from the ocean – the so called 
water-leaving radiance. The scattering and absorption characteristics of ocean water and its constituents 
are described by the inherent optical property (IOP, Preisendorfer [1976]). Note that the IOP does not 
depend on the radiance distribution. If we can successfully remove the atmosphere and surface effects, the 
best we can hope for from inversions of the water-leaving radiance are the scattering and absorption 
characteristics of the dissolved and suspended materials.  

While the spectral quality and quantity of the water-leaving radiance is largely determined by the IOP, 
conventionally the modification of the radiance has been used to directly determine oceanic constituents. 
Typically the desired parameter has been the chlorophyll concentration, Chl. Usually algorithm 
development searches for a combination of radiance signals at several wavelengths to find some ratio or 
other combination that relates empirically to the desired parameter. The coefficients contained in these 
algorithms are generally derived by pooling data collected at various spatial and temporal scales. This 
globally and seasonally inclusive approach, which removes “noise” associated with the data sets, 
diminishes important spatial and temporal features of the global oceans. This approach assumes that the 
ocean is a black box, and that little is to be gained by examining how the black box works, presumably 
because the black box is too difficult to be understood. With such a perception, most algorithm 
development (even today) uses the black box approach (see Fig. 1.1). However, a great deal is known 
about the IOP and its influence on the water-leaving radiance, as is detailed below. 

In the past (CZCS), present (e.g., SeaWiFS, MODIS), and in the future (VIIRS-NPOESS) the 
emphasis of ocean color remote sensing has been on the derivation of the chlorophyll concentration 
[Hooker et al., 1992; Yoder et al., 2001]. This is partly because values of chlorophyll play a central role in 
conventional algorithms for primary production or light attenuation coefficients. But, fundamentally, 
water color is determined by IOP, and Chl is just one of the active components that determine the IOP, 
therefore Chl can be determined only with a relatively large uncertainty from ocean color remote sensing. 

Since no amount of study will modify nature, and the link between IOP and Chl has remained weak, 
no substantial progress has been made in the accuracy of the determination of Chl from space in the last 
two decades. On the other hand, it is now assumed as in VIIRS that ocean color can be operational. This 
should not be interpreted to mean that no further progress can be made in deriving useful information 
from remotely sensed radiance. By starting at the product end (the need to determine Chl, production, etc) 
the real inversion signal, IOP, is ignored. Fundamentally, a better approach would be to ask: “What can 
water-leaving radiance really give us, and with what accuracy?” Such an approach, based on physics, 
would examine how water color is related to the IOP and then, secondarily how the IOP are related to the 
biogeochemical parameters of the suspended and dissolved constituents, and finally what these 
parameters can tell us about processes. Such an approach, as shown below in more detail, would enhance 
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our understanding about the remotely sensed signal, optimize its utilization, and eventually provide 
improved and reliable products related to the biogeochemistry of the oceans. 
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Figure 1.1. Diagram of inverse radiative transfer elements using the “black box” approach. 
 

1.2 The Forward Problem of Ocean Optics 
The process of forward radiative transfer can be summarized by Fig. 1.2. In ocean color remote 

sensing, the forward radiative transfer problem is to predict the spectral distribution of water-leaving 
radiance based on a quantitative description of all the absorption and scattering characteristics of the 
optical components in the ocean. A recent review of radiative transfer can be found in Zaneveld et al. 
[2005b]. The inverse problem is the determination of useful oceanic particulate and dissolved parameters 
when the spectral characteristics of the water-leaving radiance are known.  
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Figure 1.2. Diagram of forward radiative transfer elements. 
 

 
The forward problem is governed by the Equation of Radiative Transfer (ERT). Without internal 

sources such as fluorescence or Raman scattering, the ERT is given by: 

    ∇. L(→x,λ,θ,φ)= -c(→x,λ) L(→x,λ,θ,φ) + β(
→x,λ,θ,φ,θ’,φ’) L(→x,λ,θ’,φ’)dω’.      (1.1) ∫

π4

0

The radiance is L, units are W(m2sr)-1, →x is the position vector (x,y,z), θ is the zenith angle, φ is the 
azimuth angle, c is the beam attenuation coefficient (in units of m-1). β(

→x,θ,φ,θ’,φ’) is the volume 
scattering function (VSF), with units of m-1sr-1. Many books have been written regarding solutions to the 
ERT (e.g., Chandrasekhar [1960] and Preisendorfer [1976]).  

The most common approach in oceanography is to assume that horizontal gradients in radiance and 
IOP are much smaller than vertical ones, so that horizontal structure is ignored. This leads to:  

        cos(θ) dL(z,λ,θ,φ)/dz = -c(z) L(z,λ,θ,φ) + β(z,λ,θ,φ,θ’,φ’) L(z,λ,θ’,φ’)dω’.    (1.2) ∫
π4

0

This is the ERT for the so-called plane parallel assumption without internal sources and is widely applied.  
Numerical solutions to this equation can be found in Mobley [1995] (Hydrolight) and Thomas and 
Stamnes [1999].   

There is a large literature on radiative transfer in the ocean and atmosphere. This body of work is 
based on deriving radiance distributions when the IOPs are known. Typically, for oceanographic 
applications, the IOPs used are based on knowledge or speculation of the relationship between particulate 
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and dissolved materials and the IOPs. Again there is a large and developing literature relating particulate 
properties such as particle concentration, size distributions, index of refraction distributions, and shape to 
IOP (for a recent review see Twardowski et al. [2005]). The forward problem is thus logically broken into 
two parts:  The relationship between biogeochemical parameters and IOP, and the relationship between 
the IOP and the radiance distribution.   

1.3 Inherent Optical Properties  
       Much has been written on the IOPs, and their wavelength dependencies; examples of which can be 
found throughout the books by Shifrin [1988], Kirk [1994], and Mobley [1994]. We will briefly 
summarize here. 

The beam attenuation coefficient (c) is a sum of the coefficients of absorption (a) and scattering (b), 
c = a + b.                    (1.3) 

The total scattering coefficient can be divided into forward, bf, and backward, bb, components: 
b = bb + bf,           (1.4) 

and 

bf = 2π  and  b∫
2/

0
d)sin()(

π
θθθβ b = 2π .                   (1.5) ∫

π

π
θθθβ

2/
d)sin()(

The theoretical aspects of light scattering are treated extensively in van de Hulst [1981]. For the 
various semi-analytical and analytical remote sensing algorithms, we now have defined the two key IOPs 
relevant to the remote sensing reflectance, a and bb. These IOPs are often separated into operationally 
defined components such as the dissolved and particulate fractions and water: 

a = aw + aph + ad + ag,            (1.6) 

and,                           

 bb = bbw + bbp,            (1.7)   

               bf = bfw + bfp,            (1.8) 

which applies to Eq. 1.3 as: 

  c = a + bf + bb.            (1.9) 

The subscripts g, p, and w represent dissolved (historically called gelbstoff or gilvin), particulate 
matter, and water, respectively. Subscripts ph and d represent the algal and non-algal components of the 
particles, respectively. Operationally, the dissolved fraction typically comprises all substances that pass 
through a 0.2 µm filter. The non-algal component is comprised of non-living particulate organic material, 
living particles such as bacteria, inorganic minerals, and bubbles. The relative contributions of these 
different particle groups to particulate backscattering are poorly known, but recent progress has been 
made [Stramski et al., 2001].   

Substituting all of the above into the ERT (Eq. 1.2) gives: 
   cos(θ) dL(z,λ,θ,φ)/dz = -[aw + ag + aph + ad + bw+ bp](z,λ) L(z,λ,θ,φ) +  

∫
π4

0
[βw(z,λ,θ,φ,θ’,φ’) + βp(z,λ,θ,φ,θ’,φ’)] L(z,λ,θ’,φ’)dω’.    (1.10) 

Of the IOP parameters in the ERT, only aph relates more or less directly to Chl (depending on the 
presence of ancillary pigments and their proportionality to chlorophyll). The other parameters only relate 
very indirectly and weakly to Chl. In so-called Case 1 waters [Morel, 1988], it is assumed that all non-
water components closely vary with Chl. This has been shown to be questionable, especially in coastal 
waters. It is thus clear, that in nature, deriving the radiance based on knowledge of Chl only, will often 
lead to incorrect results.  

When solving a forward radiative transfer problem, one determines the IOP in some manner. This can 
be done by measurement or modeling. Modeling often involves electromagnetic theory, as this allows one 
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to derive IOP based on the particle size distribution, index of refraction distribution and shape 
distribution. Clearly, requiring all of the particulate properties above to be closely related to Chl, is 
unreasonable, though in practice has quite frequently been done (e.g., Morel [1988] and Haltrin [1999]). 
This encourages people to believe that all IOPs are in fact a function of Chl only, when this is far from the 
truth.  

1.4 The Inverse Problem of Ocean Optics 
The inversion problem is to determine the biogeochemical parameters from the upwelling radiance 

spectrum, i.e. the normalized water-leaving radiance. Zaneveld [1973] has shown that the radiance 
distribution and its derivative can, in theory, be inverted to obtain the VSF and beam attenuation 
coefficient, i.e. the IOP. This has not been done in practice. An important point is, however, that the entire 
radiance distribution and its depth derivative must be known to obtain the IOP. In remote sensing we only 
know the radiance at the surface in a few directions. We therefore cannot expect to be able to accurately 
invert for all of the IOPs. A corollary is that we are unable to accurately invert for the complete suite of 
biogeochemical parameters which determine the IOPs. 

Inversion for either IOP or biogeochemical parameters is thus inexact and must, perforce, depend on 
approximations. Based on the discussion above, it is clear that inversion is also a two-step process, 
explicitly or implicitly: the derivation of IOP from the radiance, and then biogeochemical parameters 
from the IOP. Both of these are inexact procedures, especially for the separation of particulate and 
dissolved materials. Due to the extremely complex nature of these materials, their full details cannot be 
expected to be inverted from the IOP. Nonetheless, one would logically expect inversion of the water 
leaving radiance spectrum to follow an inverse approach to that of Fig. 1.2. 

Historically, starting with the CZCS, remote sensing inversions have been focused on the direct 
derivation of the Chl from water-leaving radiance (e.g., Fig. 1.1). This was based on the early recognition 
that chlorophyll-laden waters are “greener” than chlorophyll poor waters. While this was a reasonable 
starting point, it is also unfortunate in that this is still the oceanographic parameter chosen for 
performance criteria of future satellite sensors such as NPOESS–VIIRS. This is unfortunate not because 
chlorophyll is of no interest to scientists and managers, but because chlorophyll is only indirectly or not at 
all related to many of the IOPs that determine radiance, as shown in the IOP section and Fig. 1.3 below. 
Using chlorophyll as the primary product therefore minimizes the information that can be gained from 
optical remote sensing. Even the chlorophyll concentration itself could be determined with greater 
accuracy if there was a full understanding of all the optical processes that connect the remotely sensed 
radiance to the IOP and the IOP to chlorophyll.  

It is of course possible to find empirical relationships between e.g. radiance ratios and Chl, but the 
uncertainties in such relationships cannot be predicted and analyzed. Furthermore such relationships 
cannot be justified or derived a priori using radiative transfer. Because of this most of the information 
contained in remotely sensed radiance is ignored or overlooked. This approach thus limits the use and 
applicability of optical remote sensing.  

How can one obtain the maximum information from remote sensing? This requires going back to the 
approach in Fig. 1.3. We must recognize that the radiance spectrum depends physically on the IOP and 
solar input. Thus if we focus on the derivation of the IOP to the maximum allowed by the geometric 
restrictions of radiative transfer, we have not diminished the information given to us. Once the IOP are in 
hand we can ask the second question: “What particulate and dissolved properties can be derived from the 
remotely determined IOP?” Such an IOP based inversion maximizes the information gained from remote 
sensing, whereas the black box approach minimizes it. Recently good progress has been made in the 
inversion of IOP from the upwelled radiance spectrum (for example, Roesler and Perry [1995]; Lee et al. 
[1996a], Garver and Siegel [1997]; Hoge and Lyon [1996]; Carder et al. [1999]; Maritorena et al. [2002]; 
Lee et al. [2002]; Roesler and Boss [2003]). 
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⎜
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⎟
⎠
⎞

⎜
⎝
⎛

∫ ∫= )(
2
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2

0

2/

0
zEzbddzLzzf od
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b π

ϕθθϕθϕθπβ
π π
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( ))()('')'sin()',',()',',0,,()(
2

0 2/
zLzbddzLzzf ufL ⎟

⎠
⎞

⎜
⎝
⎛

∫ ∫= ϕθθϕθϕθπβ
π π

π
.       (1.14b) 

Eq. 1.12 is an exact expression as it is only a rewrite of the ERT. All of the details of the radiative 
transfer process are compressed into the parameters µ̄d(z), fb(z), fL(z), and ku(z).  

The simple relationship in Eq. 1.11 is thus clearly an approximation. Based on Eq. 1.12, Zaneveld 
[1995] has derived the following (also approximate) dependence of g: 

   
)/11()0(2 ∞

− +
≈

µµπ d

bfg ,    (1.15) 

where µ̄∞ is the asymptotic average cosine, which in turn can be described as a function of b/c [Berwald et 
al., 1995; Zaneveld, 1989].  

We thus find that the remote sensing reflectance can be expressed directly in terms of IOP. This is 
logical as that reflectance is a measure of water-leaving radiance while radiance is determined by the 
ERT. The difficult part is that all of the directional effects of radiative transfer are involved. The entire 
shape of the volume scattering function thus matters. Therefore anytime we use inversion formulas such 
as Eqs. 1.11 and 1.15 approximations, uncertainties are introduced.  

A further problem in the interpretation of remotely derived properties is the vertical structure of the 
IOP. Recently Zaneveld et al. [2005a] derived the dependence of the reflectance at the surface on the 
vertical structure of optical parameters from first principles. It was shown that the depth dependence is a 
function of the derivative of the round trip attenuation of the downwelling and backscattered light. With 
some approximation it can be shown that the backscattering to absorption ratio follows the same vertical 
integration rule. For backscattering and absorption separately, and for chlorophyll it can be shown that 
there is no general formula that allows one to integrate the vertical structure and arrive at the remotely 
sensed parameter. Only in the special case of “optical homogeneity” where the ratio of the backscattering 
and absorption coefficients does not vary with depth, can the vertical structure be ignored.  

What we learn from the above discussion is that in remote sensing inversion the directional and 
vertical details are initially conveniently buried in various model parameters. Later, when higher 
accuracies of inversion are required, this then necessitates the reinsertion of those information, such as the 
directional effects as evidenced by Morel et al. [1993; 1996] on the bi-directional reflectance. What has 
not been done is to start with an expression such as Eq. 1.12, which contains the full ERT and use this as 
a basis for the derivation of IOP and hence particulate and dissolved properties. This then is an approach 
to the question: “What information about the oceanic environment can optical remote sensing provide 
us?” The multiple connections in Fig. 1.3 can then be explored, and such an approach would allow the 
maximum information content of the remotely sensed data to be obtained. 
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Chapter 2. Synthetic and in situ Data Sets for Algorithm Testing 
Stephane Maritorena, ZhongPing Lee, KePing Du, Hubert Loisel, Roland Doerffer, Collin Roesler, Paul 
Lyon, Akihiko Tanaka, Marcel Babin, and Oleg V. Kopelevich 
 

In algorithm testing and evaluation, we are frequently limited by the availability of adequate data sets. 
In many studies, individual groups measured some data from limited areas. Those data sets, which are 
important for the initial development of algorithms, usually lack the dynamic range, and therefore make it 
difficult to evaluate an algorithm’s performance in broader scales. To fill in this gap and to have a 
common ground for algorithm testing, two independent data sets were compiled and adopted by the 
“Algorithm Working Group”. One of the data sets is compiled from global field measurements, where 
uncertainties among measured properties are common (see Chapter 3). Another data set is simulated using 
the widely accepted numerical code Hydrolight [Mobley, 1995], with input IOPs generated based on 
extensive measurements made in the field. This synthetic data set can be viewed as results from ideally 
controlled experiments where errors from measurement processes are minimal. This chapter summarizes 
the characteristics of both synthetic and in situ data sets.    

2.1 In situ Data Set 
The in situ data set is an extraction from NASA's SeaWiFS Bio-optical Archive and Storage System 

(SeaBASS) (Hooker at al. [1994], http://seabass.gsfc.nasa.gov/) and contains chlorophyll-a concentration 
(Chl), above-surface remote sensing reflectance (Rrs, which is the ratio of water-leaving radiance, Lw, to 
downwelling irradiance just above the surface, Ed(0+)) at the first five SeaWiFS bands (412, 443, 490, 510 
and 555 nm), along with the detrital (ad), gelbstoff (ag), and phytoplankton (aph) absorption coefficients. 
Detrital (ad) and gelbstoff (ag) absorption coefficients were summed to form a single term [Carder et al., 
1991] as adg (acdm in Maritorena et al. [2002]) and total absorption (a) was calculated by adding pure 
water values (aw) [Pope and Fry, 1997] to aph and adg at each wavelength. The chlorophyll-a, remote 
sensing reflectance, and absorption data were considered a match (i.e. coming from a unique station) 
when all measurements were made within a 12-hour window and within 0.05 degrees in both latitude and 
longitude. Absorption data come from hyperspectral spectrophotometric measurements but only the 
SeaWiFS bands were used for consistency with the remote sensing reflectance data.  

Methods to measure Rrs, ad, ag and aph are summarized in NASA’s technical memorandum [Mueller 
and Austin, 1992]. Generally, phytoplankton absorption coefficients were obtained by spectrophotometric 
measurements after filtration of a water sample through a GF/F filter. Detrital absorption coefficients 
were obtained after a methanol extraction of the pigments on the GF/F filter. Gelbstoff absorption 
coefficients were obtained by measuring the absorbance of the filtrate with a spectrophotometric cell 
(usually ~10 cm in length). Remote sensing reflectance data were obtained by either in-water or above-
surface radiometric measurements [Mueller et al., 2002]. Backscattering measurements were too rare to 
be included here. As always, errors (sometimes quite large) are associated with each of the measured 
components.  

Data were filtered by applying quality control procedures to the remote-sensing reflectance and 
absorption data. For Rrs, these procedures consisted of comparisons with the SeaBAM data set [O'Reilly et 
al., 1998] and the synthetic data set described in Section 2.2. For a given chlorophyll range, data with 
Rrs(λ) values either 10% higher or 10% lower than the maximum or minimum value found in the 
SeaBAM or synthetic data sets for the same Chl range were eliminated. While this procedure removed 
extra noise in the data set, it may have also removed some extreme cases such as CDOM or sediment 
dominated waters. Of the 1235 original data points, 177 points were eliminated during this step.  

For the absorption components, the following controlling factors were applied: 
1.0 < adg(412)/adg(443) < 2.0, 
1.0 < adg(443)/adg(490) < 3.0, 
0.5 < aph(412)/aph(443) < 1.1, 
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0.1 < aph(490)/aph(443) < 1.0, 
and another 402 points were removed during this step. The final in situ data set contains only 656 stations 
with a complete set of Chl, Rrs, and component absorption data. Most of the data come from locations that 
are relatively close to the coast and some of the data are from high latitudes. Fig. 2.1 presents a summary 
of the origin and location of the in situ data set. 

 

 
Figure 2.1. Data location of the in situ data set. The origin of the data and the number of stations (in 
parentheses) by experiment are also indicated.  

 

2.2 Synthetic Data Set 
This data set (a total of 500 points) contains both inherent (IOP) and apparent (AOP) optical 

properties. IOPs, required as inputs for Hydrolight [Mobley, 1995], are simulated with optical/bio-optical 
parameters/models. Detailed descriptions regarding the simulation of IOPs and AOPs can be found at 
http://www.ioccg.org/groups/OCAG_data.html.  

To summarize briefly, the absorption coefficient of the bulk water was simulated using a four-term 
model [Bukata et al., 1995; Carder et al., 1991; Doerffer et al., 2002; Fischer and Fell, 1999; Prieur and 
Sathyendranath, 1981; Roesler et al., 1989], with contributions from water molecules, phytoplankton, 
detritus, and gelbstoff. Values of aw(λ) were taken from Pope and Fry [1997]. Values of aph(λ) were 
modeled as aph(440) multiplying the spectral shape of phytoplankton absorption coefficient (  ≡ 

a

)(λ+
pha

ph(λ)/aph(440)), with aph(440) expressed as a function of Chl [Bricaud et al., 1995].  were taken 
from extensive measurements (600 spectra) of Bricaud et al. [1995; 1998] and Carder et al. [1999]. These 
spectral shapes have different characteristics between oligotrophic and eutrophic waters [Hoepffner and 
Sathyendranath, 1992; Stuart et al., 1998]. To represent this natural variation, at least to the first order, 
this  data bank is divided into nine groups separated by the measured a

)(λ+
pha

)(λ+
pha ph(440) values. Fig. 2.2 

presents examples of  from the nine groups. In the simulation of a)(λ+
pha ph(λ) spectra, is selected 

randomly within the group where a
)(λ+

pha

ph(440) value falls in. By such a process, variability of aph spectral 
shapes remains among the modeled aph(λ) spectra, and at the same time  of eutrophic waters will 
not be used to generate a

)(λ+
pha

ph(λ) of blue oceanic waters, or vice versa.  
Absorption spectra of both detritus and gelbstoff were described as exponentially decreasing 

functions with wavelength [Bricaud et al., 1995; Roesler et al., 1989]. The spectral slopes and absorption 
values at 440 nm were considered as random variables but constrained by ranges commonly observed in 

 12

http://www.ioccg.org/groups/OCAG_data.html


the field. The absorption coefficients at 440 nm were also varied randomly, but this randomness was 
constrained such that the ranges were wider for higher Chl values and narrower for lower Chl values.  
the field. The absorption coefficients at 440 nm were also varied randomly, but this randomness was 
constrained such that the ranges were wider for higher Chl values and narrower for lower Chl values.  

The total scattering coefficient was simulated 
by a three-term model [Bukata et al., 1995], with 
contributions from water molecules, 
phytoplankton, and inorganic particles. Two 
different particle phase functions were used to 
represent the scattering distribution of 
phytoplankton and inorganic particles. For both 
particulates, the scattering coefficients at 550 nm 
and the spectral exponents were varied randomly 
(but within commonly observed ranges).  

The total scattering coefficient was simulated 
by a three-term model [Bukata et al., 1995], with 
contributions from water molecules, 
phytoplankton, and inorganic particles. Two 
different particle phase functions were used to 
represent the scattering distribution of 
phytoplankton and inorganic particles. For both 
particulates, the scattering coefficients at 550 nm 
and the spectral exponents were varied randomly 
(but within commonly observed ranges).  

Figure 2.2. Examples of aph spectral shape for the nine aph 
groups (separated by values of aph(440) [m-1]). Numbers in 
parenthesis are the range of Chl [mg/m3] for those groups. 

With the above modeled absorption and 
scattering (backscattering) coefficients, Hydrolight 
was used for the calculation of radiance 
distribution and then the AOPs, which include the 
nadir-viewed above-surface remote-sensing 
reflectance (Rrs), nadir-viewed subsurface remote-
sensing reflectance (rrs), and subsurface irradiance 
reflectance (R). In the Hydrolight runs, solar input 
was simulated with the Gregg and Carder [1990] 
model with marine aerosols, and the sky was assumed cloud free. A wind speed of 5 m/s was applied, and 
the water body was assumed homogeneous. Spectral bands were set from 400 to 800 nm, with a spacing 
of 10 nm. Inelastic scatterings (i.e. Raman scattering, chlorophyll fluorescence, etc.) were excluded.  

With the above modeled absorption and 
scattering (backscattering) coefficients, Hydrolight 
was used for the calculation of radiance 
distribution and then the AOPs, which include the 
nadir-viewed above-surface remote-sensing 
reflectance (R

The synthetic data set is compared with the in situ data set for consistency. Fig. 2.3a presents the 
range and variation of Rrs(440) versus a(440), whereas Fig. 2.3b presents the range and variation of 
Rrs(410)/Rrs(440) versus Rrs(490)/Rrs(555), for the two data sets. Rrs(412)/Rrs(443) is used instead of 
Rrs(410)/Rrs(440) for the in situ data set. We view the effects of these small wavelength differences are 
negligible. For both data sets, a(440) is in a range of ~0.02 – 3.1 m-1, while Rrs(490)/Rrs(555) is in a range 
of ~0.3 – 5.2. Clearly, the two data sets generally agree with each other in variation and coverage. Some 
in situ data points, however, have higher Rrs(410)/Rrs(440) ratios for Rrs(490)/Rrs(555) around 1.0.  

The synthetic data set is compared with the in situ data set for consistency. Fig. 2.3a presents the 
range and variation of R

rs), nadir-viewed subsurface remote-
sensing reflectance (rrs), and subsurface irradiance 
reflectance (R). In the Hydrolight runs, solar input 
was simulated with the Gregg and Carder [1990] 
model with marine aerosols, and the sky was assumed cloud free. A wind speed of 5 m/s was applied, and 
the water body was assumed homogeneous. Spectral bands were set from 400 to 800 nm, with a spacing 
of 10 nm. Inelastic scatterings (i.e. Raman scattering, chlorophyll fluorescence, etc.) were excluded.  

This synthetic data set certainly may not cover the variations of all possible natural waters. Because 
the models and parameters used in the simulation process are based on extensive field measurements, 
however, this synthetic IOP-AOP data set represents a wide range of variations that is encountered in the 
field.  

This synthetic data set certainly may not cover the variations of all possible natural waters. Because 
the models and parameters used in the simulation process are based on extensive field measurements, 
however, this synthetic IOP-AOP data set represents a wide range of variations that is encountered in the 
field.  

rs(440) versus a(440), whereas Fig. 2.3b presents the range and variation of 
Rrs(410)/Rrs(440) versus Rrs(490)/Rrs(555), for the two data sets. Rrs(412)/Rrs(443) is used instead of 
Rrs(410)/Rrs(440) for the in situ data set. We view the effects of these small wavelength differences are 
negligible. For both data sets, a(440) is in a range of ~0.02 – 3.1 m-1, while Rrs(490)/Rrs(555) is in a range 
of ~0.3 – 5.2. Clearly, the two data sets generally agree with each other in variation and coverage. Some 
in situ data points, however, have higher Rrs(410)/Rrs(440) ratios for Rrs(490)/Rrs(555) around 1.0.  

In the following chapters (Chapter 4 – Chapter 12), a series of existing algorithms for the retrieval of 
IOPs from Rrs(λ) are applied to both synthetic and in situ data sets, with retrieved absorption and/or 
backscattering coefficients compared with known (synthetic) or measured (in situ) values, respectively. 
To evaluate the performance of each algorithm, regression results (Type II [Laws, 1997]) and Root-Mean-
Square-Error (RMSE) are calculated and tabulated for each property, in log space. RMSE is defined as 
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where IOPi
model stands for the ith property derived from Rrs(λ), IOPi

true for the ith property known either 
from simulation or from in situ measurements, and n is the number of valid retrievals. It is necessary to 
point out that, due to architecture difference, different algorithms may derive slightly different sets of 
IOPs from the same Rrs(λ). Also, for the same IOP product, due to the different settings of the algorithms, 
not all algorithms may derive valid retrievals for a given Rrs(λ) spectrum. Such non-valid retrievals are 
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then excluded in the performance analysis, and result smaller number of data size and likely better 
statistical results. 
 
 
 
 

Figure 2.3. Comparison between in situ and synthetic data sets. (a) Ranges and variations of Rrs(440) and 
a(440). (b) Ranges and variations of Rrs(410)/Rrs(440) and Rrs(490)/Rrs(555). 
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Chapter 3. Uncertainties in the Products of Ocean Color Remote Sensing 
Emmanuel Boss and Stephane Maritorena 

 

Data products retrieved from the inversion of in situ or remotely sensed ocean color data are generally 
distributed or reported without estimates of their uncertainties. The accuracy of inversion products such as 
chlorophyll or IOPs is frequently evaluated by comparison with in situ measurements but these analyses 
are not always sufficient to determine the level of uncertainty of an ocean color product. This is 
particularly true for remote sensing data where match-up analyses [McClain et al., 2000] 
(http://seabass.gsfc.nasa.gov/matchup_results.html) can only be performed for an infinitesimal fraction of 
a sensor’s records. Although very useful, these analyses cannot provide reliable estimates of how ocean 
color uncertainties vary with time and/or space. Moreover, because the uncertainties of the input data (for 
example the normalized water leaving radiance, NWLR) vary in space and time, the uncertainties of the 
output products cannot be simply reported as a single global value unless it is intended to provide general 
bounds. Some ocean color products are also used as input to other models (for example, to calculate 
primary production or to assimilate phytoplankton carbon into ecosystem models) for which uncertainty 
budget cannot be properly established without knowledge of the uncertainties associated with the input 
data. It is thus important that the variations of the uncertainty in NWLR and in the products derived from 
them are documented in time and space. This section discusses the various types of uncertainties present 
in ocean color data or products and stresses recent approaches that allow uncertainties of satellite ocean 
color products to be estimated on a pixel-by-pixel basis. 

3.1 Sources of Uncertainties 
a. Uncertainties in in situ measurements (NWLR, Rrs, Chl, IOP) 

In situ data are used for algorithm development and for validation of algorithms and data products. 
While in situ measurements are frequently considered as “the reference” to which other data (e.g. satellite 
data) are compared with, they contain significant levels of uncertainties caused by various experimental 
and environmental factors. Calibration, dark signal, data processing, deployment strategy, sea and sky 
states all introduce uncertainties in the radiometric measurements [Hooker and Maritorena, 2000; Hooker 
et al., 2001; Siegel et al., 1995]. Close compliancy to establish measurement protocols (e.g. Mueller and 
Austin, [1995] and follow up) along with regular and rigorous calibrations and good characterization of 
instruments are key to the minimization of uncertainties in in situ measurements. Measurements of 
biogeochemical variables have their own set of difficulties and resulting uncertainties [Claustre et al., 
2004; Mitchell et al., 2000; Van Heukelem et al., 2002]. Most of the data sets that are publicly available 
(e.g., SeaBASS) do not contain information regarding the estimated uncertainties of the various variables 
they contain (e.g., the differences between the triplicate chlorophyll measurements and the uncertainties 
in the radiometer reading, based on its variability through the sampling period and its calibration history). 
It is frequently assumed that the uncertainties of in situ data are small and in any case much smaller than 
the uncertainties arising from the natural spatial/temporal variability of a given variable. 

Another uncertainty arises from the fact that the match-up field data usually characterize an area of 
the 1-10 m while the satellite spatial scale is often 100-1000 m. This environmental mismatch in scales 
introduces an uncertainty that is often hard to quantify. Also, satellite measurements represent a water-
column weighted average [Gordon and Clark, 1980; Sathyendranath and Platt, 1989; Zaneveld et al., 
2005a], while in situ measurements usually come from discrete depths. Therefore, for vertically 
inhomogeneous waters, uncertainties arise when the two are compared with each other. Some sampling 
platforms such as on-line sampling from steaming vessels, undulating vehicles, gliders, and AUVs are 
likely to be fruitful approaches in quantifying these uncertainties. 
 
b. Uncertainties in satellite measurements (NWLR) 
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Various sources of random and systematic error contribute to disagreements between measured 
NWLRs and their actual values. Uncertainties in the NWLRs are introduced through a variety of factors 
such as pre-launch characterization of the sensor, atmospheric and bi-directional corrections, and 
uncertainties in the monitoring of the changes in the sensor’s performance. Errors in geo-location, 
contamination with light emanating from adjacent pixels or other factors like white caps can also add to 
this uncertainty. The calibration/validation activities of each ocean color mission are designed to assess 
and minimize the magnitude of this uncertainty (and remove any bias). Pre-launch and on-orbit 
characterization of the sensors (e.g., measurements of reflected Sun and/or Moon light) along with 
vicarious calibrations (e.g., the MOBY buoy) and match-up analyses are the major procedures used to 
quantify NWLR’s uncertainties. 

The calibration/validation activities and the reduction of the uncertainties in the derived NWLR 
should be one of the primary tasks of space agencies providing the ocean color data and much effort must 
be invested in minimizing it for various missions. In the remainder of this chapter we will therefore 
assume the uncertainty in the NWLR is known and documented, although at present failure of atmosphere 
correction still dominates errors in NWLR of coastal waters.  

 

c. Uncertainties and assumptions in the functional relationship that links NWLR and IOP and in the 
inversion procedure used to derive the products 

Uncertainties in the products derived from the inversion of NWLR, however, do not benefit from the 
same level of effort. In what follows we will address these uncertainties with reference to the type of 
algorithm designed to produce them, separating between empirical and semi-analytical inversion 
algorithms. The approaches used in some recent works to provide ocean color product uncertainties are 
also described. 

 
1) Obtaining uncertainties in products based on empirical algorithms 

Empirical algorithms are developed from data sets where in situ radiometry and a to-be-derived 
product (e.g., chlorophyll, POC) have been collected at the same spot of the ocean and within a narrow 
period of time. A regression is most often performed to obtain the ‘best-fit’ function between the two 
variables and define the formulation that relates the two quantities. The type of regression used to relate 
two variables is relevant to the uncertainty discussion because regression methods work under different 
assumptions about uncertainties in the data involved. Type-I regressions [Laws, 1997] are the most 
frequently used and they are based on the assumption that only the dependent variable (i.e. y, the product) 
has an uncertainty, while the independent variable (i.e. x, the input data) is error free. In Type-I 
regressions, the individual uncertainties in the input data are not taken into account and it is generally 
assumed that the relative error in the variable is constant. Conversely, Type-II regressions [Laws, 1997; 
Press et al., 1992] assume that both variables have uncertainties and are thus better adapted for ocean 
color where substantial uncertainties frequently exist in the variables involved (e.g., reflectance ratio, 
chlorophyll).  

An empirical algorithm is as good as the data it is based on and on how representative the data are of 
the environment or bio-optical provinces where the algorithm is to be applied. In situ data sets are often 
geographically and seasonally biased due to constraints in oceanic cruise’s timing and locations [Claustre 
and Maritorena, 2003]. 

In general, it is crucial that data sets used in the development (or validation) of an ocean color 
algorithm have complete information about the location and time at which the data were collected and 
about their quality (i.e. associated uncertainties). The geographical and temporal extent of a data set 
determines the water types where the algorithm can be applied whereas uncertainties in products require 
information on uncertainties in the input data. 

For empirical algorithms, the dispersion of the y-axis data (i.e. the product) around the “mean” 
relationship of the resulting algorithm provides, to some degree, information about the uncertainties that 
can be expected at any given x-axis value (i.e. the input data). However, this only represents the 
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uncertainties associated with the data set used in the regression and cannot be generalized unless the data 
set fully encompasses all the natural variability that exists for the water types included. Ideally, to 
evaluate the uncertainties of an empirical algorithm one needs a different data set than that with which the 
algorithm was developed; the statistics of the differences between the inverted product and the measured 
products in this independent data set can then be used to evaluate the uncertainties in the product. 
Additionally, an uncertainty propagation analysis to evaluate the effect of the uncertainties in the NWLR 
on the output has to be carried out to establish whether or not this uncertainty is a significant source for 
uncertainty in the product (e.g., to what extent is a 5% relative uncertainty in NWLR at 440 and 555 nm 
affects the IOPs retrieved).  

In the case of neural network (NN) based algorithms uncertainties should be determined from a 
rigorous statistical approach. Aires et al. [2004] provided an example for such an approach to products 
derived from remote sensing (other than ocean color). They use a Bayesian technique to evaluate the 
uncertainties in the NN parameters which are then used to compute the uncertainties in the outputs.  

Another way to determine whether the measured reflectance spectrum is within the domain of the bio-
optical models used to simulate reflectance spectrum, which in turn were used to train a neural network, 
has been developed for the Medium Resolution Imaging Spectrometer (MERIS) [Doerffer and Schiller, 
2000; Krasnopolsky and Schiller, 2003]. For this purpose one network is trained to determine 
concentrations from the eight MERIS bands together with the solar and viewing zenith angles and the 
azimuth difference between viewing and sun direction (see Chapter 6, this report). A second, forward, 
network is trained with the same data set, which takes the derived concentrations as input and produces 
reflectances. The deviation calculated as the Chi2 [Sokal and Rohlf, 1981] over all eight bands between 
the measured and the computed spectrum is then used as an indicator if the measured spectrum is within 
the training range and thus within the scope of the algorithm. In the case of the MERIS ground segment, a 
flag is raised whenever the Chi2 deviation exceeds a certain threshold. However, the Chi2 value can also 
be used as an uncertainty measure. Furthermore, a technique has been developed [Schiller and Doerffer, 
2005], which combines the neural networks with an optimization procedure, to estimate the uncertainty of 
a product on a pixel-by-pixel basis. 

 
2) Obtaining uncertainties in products based on semi-analytical models 

Semi-analytical models or algorithms are based on the premise of a known relationship (derived from 
the radiative-transfer theory) between NWLR (or a function of it) and IOP (generally the absorption, a, 
and the backscattering, bb, coefficients). These models contain some level of empiricism in the way IOPs 
are parameterized (i.e. how their variations and spectral shapes are formulated) and they also use 
simplified assumptions for some of their components (see Chapter 1). The inversion of semi-analytical 
models generally allows the simultaneous retrieval of several variables contained in the IOP terms. 
Similarly to empirical algorithms, semi-analytical models are affected by uncertainties in the NWLRs but 
they are also influenced by uncertainties associated with the chosen relationship between NWLR and 
IOPs and uncertainties resulting from the assumptions used in their formulation. 

Sensitivity analyses are frequently used to assess how assumptions used to describe the component 
terms of a model affect retrievals [Garver and Siegel, 1997; Hoge and Lyon, 1996; Roesler and Perry, 
1995]. Although very useful, this approach does not allow the determination of a product’s uncertainty on 
a case-by-case (or pixel-by-pixel) basis but rather provides a general uncertainty estimate. To our 
knowledge, only two methods have recently been used with ocean color data that can estimate the 
uncertainties of products retrieved by the inversion of a semi-analytical model on a case-by-case basis. 
The first one [Maritorena and Siegel, 2005] is a nonlinear adaptation of the calculation of confidence 
intervals in linear regressions. Roughly, this method is based on the projection of the residuals between 
the observed and reconstructed (from the inverted variables) NWLR in the solution (i.e. retrieved 
variables) space [Bates and Watts, 1988]. 

A recent study [Wang et al., 2005] suggests another approach to compute uncertainties of the 
retrieved variables. In this approach, each of the variables to be retrieved has a predefined set of spectral 
shapes and the model is inverted for each of the possible combinations of these spectral shapes resulting 
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in an extensive set of possible solutions. These results are then filtered in order to only keep the “realistic” 
(e.g., positive) solutions that can spectrally reproduce closely the input NWLR spectrum (within a pre-
described difference from the NWLR based on the uncertainties in NWLR and the uncertainties in the 
theoretical relationship between NWLR and IOP). The final value for each inversion product and its 
associated uncertainty are then obtained from the statistics (median and percentiles) on the acceptable 
solution subset. The key steps in this approach are the choice of the acceptance criteria for the solutions 
(e.g., what is the acceptable difference between observed NWLR and that reconstructed from retrieved 
IOP) and the choice of range in possible shapes for the spectrum of each individual IOP. The two 
methods described above don’t produce the same kind of uncertainties and thus they are not directly 
comparable. Both approaches have benefits and limitations. For example, the Maritorena and Siegel 
[2005] approach always returns a value for the confidence interval of the retrieved product because the 
calculations do not depend on spectral criteria but on the sum of the residuals (weighted by the spectral 
uncertainties of the input data, if they are known). On the other end, this approach does not take into 
account the uncertainties caused by the model assumptions. In the Wang et al. [2005] approach, 
uncertainties in the model and data are included in the spectral agreement criteria but the inversion may 
fail to find any solution that satisfies this criteria. Although, it uses an efficient linear matrix inversion 
technique [Hoge and Lyon, 1996], the Wang et al. [2005] method is also more computationally 
demanding (computational demands increase with numbers of possible combinations of different shapes 
of IOPs). 

3.2 Summary 
While some rough and general uncertainty estimates for ocean color products are available through 

match-up analyses, uncertainties are generally not provided on a per data point basis. This has caused 
many users to use ocean color products as a qualitative descriptor of patterns rather than a quantitative 
variable. Others use these products in biogeochemical models (e.g., computing primary productivity) 
without being able to propagate uncertainties.  

For some ocean colour missions, such as for MERIS, a sophisticated flagging system has been 
developed. It computes on a pixel-by-pixel basis indicator for the reliability of a product by regarding 
different possible error sources including sun glint, failure in the atmospheric correction, high turbidity in 
the water, etc. A flag for each possible problem is raised if the uncertainty value exceeds a certain 
threshold. By this the user gets a warning and has to decide if he can accept this pixel for further 
computations, etc. 

Here we briefly review some of the uncertainties present in ocean color data and presented different 
approaches to establish uncertainties in products of ocean color remote sensing for either empirical or 
semi-analytical algorithms. The procedures described above are not complicated and their full application 
benefits from the knowledge of uncertainties in the input data. Use of such approaches will help the ocean 
color community to establish quantitative confidence in the remote sensing products. 
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Chapter 4. Simple Algorithms for Absorption Coefficients 
ZhongPing Lee, Stephane Maritorena, Andrew H. Barnard 

4.1 One-Step Spectral Ratio Algorithm 
4.1.1. General description  

Similar to the empirical approach of deriving chlorophyll concentration from ocean color data, the 
simplest way to derive absorption coefficients from Rrs(λ) is by empirical relationships. This kind of 
approach does not require knowledge of the fundamental relationships between Rrs and IOPs, but requires 
an adequate data set to develop the empirical coefficients. For the derivation of total absorption 
coefficient at 440 nm, based on limited (63 data points) measurements, Lee et al. [1998b] developed an 
empirical spectral-ratio algorithm from the spectral ratios of Rrs(λ). To obtain better fit between measured 
and algorithm-derived value, the algorithm uses quadratic polynomials with two spectral ratios:  
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Values of A0,1,2 and B1,2 in Eq. 4.1, derived by least-square fitting, are -0.674, -0.531, -0.745, -1.469, and 
2.375, respectively [Lee et al., 1998b].   
 

Figure 4.1.  Comparison between algorithm-derived and known IOP, with algorithm results from the Lee 
et al. [1998b] empirical approach. (left) a(440) of the synthetic data set; (right) a(443) of the in situ data 
set.  
 
 
4.1.2. Results and discussion when applied to the IOCCG data sets 

With Rrs values at 440, 490 and 555 nm (or nearby wavelengths) as inputs, values of a(440) were 
calculated from Eqs. 4.1 and 4.2. Figure 4.1 compares the derived and known a(440) values for the 
synthetic and the in situ data sets, respectively. For the synthetic data set, this empirical algorithm 
systematically overestimated a(440) for most of the data, though good correlation of determination (R2 = 
0.976) was achieved between algorithm derived and known a(440) values (see Table 4.1). Such a result 
suggests that the empirical coefficients, derived by forcing Eq. 4.1 derived a(440) to match a limited 
number of a(440) from field measurements, were biased by data from those measurements. It is likely that 
when more high-quality data are available the coefficients in Eq. 4.1 could be fine tuned and the 
estimation of a(440) from Rrs(λ) by simple ratios could be improved.  
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For the in situ data set, the R2 value is 0.817 and the RMSE is 0.202 (see Table 4.2), indicating that 
algorithm-derived a(440) are quite consistent with a(440) values from water samples. The larger 
differences are likely due to uncertainties associated with both Rrs(λ) and a(440) in the in situ 
measurements (also see Chapter 3 for discussions regarding uncertainties).  

4.2 Spectral Curvature Algorithm 
4.2.1 General description 

A simplistic 3-wavelength ratio method to test in situ measurements of remote sensing reflectance 
and the absorption coefficient for closure was developed by Barnard et al. [1999]. The purpose of the 
method was to minimize the influence of parameters of the radiative transfer equation that are difficult to 
determine in situ, e.g., backscattering. This method uses two ratios with three different wavelengths (λ1 = 
440, λ2 = 490, and λ3 = 555 nm) of Rrs to minimize the spectral dependence of the backscattering 
coefficient as well as the angular dependence of the underwater light field. Based on the semi-analytical 
relationship between Rrs and bb/a [Morel and Gentili, 1993], one can derive the following relationship 
using ratios of three different wavelengths: 
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As the spectral behavior of g parameter is nearly linear over these wavelengths, only a small error is 
induced by assuming that the triple ratio of g is equal to 1.0. The triple wavelength ratio of the 
backscattering coefficient in Eq. 4.3, evaluated over typical oceanic conditions where the backscattering 
ranges from particle dominated to water dominated and where the spectral dependency of particle 
backscattering ranges from 0 to 2, varies from 0.93 to 1.02. Thus by choosing a constant value equal to 
0.975 for the bb ratio term in Eq. 4.3, a maximum error of 4.5% is made for most oceanic conditions.   
 Substitution of the assumed constant values of g triple ratio (= 1.0) and the backscattering triple ratio 
(= 0.975) into Eq. 4.3 results in a model that can be used directly to compare in situ (and modeled) 
measurements of Rrs(λ) and a(λ). 
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If functional relationships between the absorption coefficients exist at the selected three wavelengths such 
that the absorption at λ1 and λ3 can be defined solely in terms of the absorption at λ2, the above 
formulation can be used to invert the remotely sensed reflectance to determine the spectral absorption at 
the selected three wavelengths. 
 While any functional form for the spectral absorption coefficient can be utilized, Barnard et al. [1999] 
has shown that the absorption at 440 (originally it was 443 nm) and 555 nm is significantly linearly 
correlated to the absorption at 490 nm, such that; 
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where values of A, B, C, and D are 1.561, -0.012, 0.319, and 0.067, respectively. 
Substitution of these functional forms into Eq. 4.4 thus allows for the absorption coefficient at 490 

nm (and then at 440 and 555 nm) to be derived solely from Rrs(λ), 
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4.2.2. Results and discussion when applied to the IOCCG data sets 
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With Rrs(λ) values at 440, 490 and 555 nm, a(490) and a(440) are calculated from Rrs3 based on Eq. 
4.5 and Eq. 4.6. Figure 4.2 (also see Tables 4.1 and 4.2) compares model-derived a(440) versus known 
a(440) values. For the synthetic data, the model-derived values are seems systematically higher in the 
lower end (a(440) < 0.05 m-1) and systematically lower in the higher end (a(440) > 0.3 m-1), indicating a 
mismatch between data used for algorithm development and data used for test. However, when the 
algorithm was applied to the in situ data set, no such systematically bias was found, though there were 14 
points that no valid results were obtained. 

Figure 4.2.  As Fig.4.1, with results from the spectral-curvature algorithm [Barnard et al., 1999]. (left) 
a(440) of the synthetic data set; (right) a(443) of the in situ data set.  
 

4.3 Spectral-Ratio Algorithm with Chl as A Intermediate Link 
4.3.1. General description 

Using Chl derived from spectral-ratio of Rrs(λ), and a relationship between Kd and Chl, along with an 
analytical expression that expresses a as a function of Kd and R, value of a can be derived from spectral 
ratios of Rrs [Morel and Maritorena, 2001]. Specifically, values of Chl is first derived from the current 
operational Chl algorithm for SeaWiFS (OC4v4) [SeaWiFS, 2000],  

4
rrrr r10

3
3

2
210 += +++ ρρρChl ,    (4.7) 

where ρ  = log[max(Rrs(440,490,510))/Rrs(555)], and values of r0-4 are 0.366, -3.067, 1.93, 0.649, and -
1.532, respectively.  

From Eq. 4.7 derived Chl, Kd(λ) can be calculated [Morel, 1988; Morel and Maritorena, 2001]: 
)()()()( λλχλλ e

wd ChlKK += ,    (4.8) 
with the values of Kw(λ), χ(λ) and e(λ) known from statistical analysis of field measurements (see Table 2 
of Morel and Maritorena [2001]).  

Semi-analytically, there is [Morel, 1988; Morel and Maritorena, 2001] 

)(25.21
)](1)[(9.0)(

λ
λλλ

R
RKa d

+
−

= ,    (4.9) 

and  

)()( 2

2

λλ rs
w RQ
t

nR ≈ .    (4.10) 

Here t is the sea-air transmittance, nw is the index of refraction of the water, and Q (sr) accounts the 
conversion of irradiance to radiance. The quantity Qnw

2/t2 represents the conversion between radiance 
reflectance to irradiance reflectance and the air-sea interface effect, and approximates 6.8 for the remote 
sensing domain [Morel and Gentili, 1993]. Since value of R is generally less than 0.1 and only plays a 
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secondary role in Eq. 4.9, the variation in Qnw
2/t2 does not affect much the value of a(λ) derived by Eq. 

4.9. Therefore, for a given Rrs(λ), absorption coefficients can be calculated following the Eqs. 4.7 – 4.10. 
 
4.3.2. Results and discussion when applied to the IOCCG data sets 

With Rrs(λ) values at 440, 490, 510 and 555 nm, values of a(410), a(440) and a(490) were calculated 
from Eqs. 4.7-4.10. The comparison of these derived values versus known (or measured) values is 
presented in Tables 4.1 and 4.2. Figures 4.3 shows model-derived a(440) with known a(440). Apparently, 
this empirical procedure performed very well, especially for the synthetic data set with a(440) less than 
0.2 m-1. Due to data range used to derive the parameters in Eq. 4.7 and Eq. 4.8, this empirical procedure 
with the present coefficients, however, apparently underestimates absorption when a(440) value is greater 
than 0.2 m-1.  

Similar to the other two algorithms when applied to the in situ data set, the difference between model-
derived a(440) and known a(440) is larger. And, a(440) is apparently underestimated. Even so, an R2 
value of 0.821 and an RMSE of 0.210 were achieved. 

  

Figure 4.3.  As Fig.4.1, with results from the spectral-ratio and Chl as a intermediate link [Morel and 
Maritorena, 2001]. (left) a(440) of the synthetic data set; (right) a(443) of the in situ data set.  
 
 

4.4 Conclusions 
Empirical and semi-empirical algorithms are easy and straightforward for data processing. However, 

because the empirical coefficients contained in empirical algorithms are derived from data sets that not 
necessarily represent all natural variations, the performance of such algorithms is always subject to 
compatibility between the waters under study and the waters from which data were used for the algorithm 
development. It is critical to check this consistency if robust results are desired and if such kinds of 
algorithms are going to be applied to wide areas.  
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Table 4.1: RMSE and regression (Type II) results of the synthetic data set (θ0 = 30°). N is the number 
of data tested, while n is the number of valid retrieval by an algorithm. 

 N n intercept slope R2 RMSE bias 
a(440), L98a 500 500 0.050 0.939 0.976 0.140 0.091 
a(440), B99b 500 500 -0.466 0.538 0.932 0.356 -0.151 
a(490), B99 500 500 -0.488 0.574 0.948 0.281 -0.119 

a(410), MM01c 500 500 -0.368 0.747 0.976 0.295 -0.221 
a(440), MM01 500 500 -0.299 0.792 0.976 0.224 -0.156 
a(490), MM01 500 500 -0.256 0.815 0.965 0.169 -0.096 

a: Lee et al. [1998b]  
b: Barnard et al. [1999]  
c: Morel and Maritorena [2001]  

 
Table 4.2: RMSE and regression (Type II) results of the in situ data set. N is the number of data 
tested, while n is the number of valid retrieval by an algorithm. 

 N n intercept slope R2 RMSE bias 
a(443), L98 656 656 0.140 1.081 0.817 0.202 0.061 
a(443), B99 656 642 0.085 1.039 0.643 0.272 0.047 
a(490), B99 656 642 0.152 1.080 0.626 0.255 0.062 

a(412), MM01 656 656 -0.228 0.911 0.817 0.237 -0.147 
a(443), MM01 656 656 -0.158 0.954 0.821 0.210 -0.113 
a(490), MM01 656 656 -0.117 0.949 0.808 0.171 -0.059 
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Chapter 5. Inversion of IOP based on Rrs and Remotely Retrieved Kd  
Hubert Loisel and Antoine Poteau 

5.1 Background 
Based on Monte Carlo and Hydrolight simulations we developed an inverse algorithm to retrieve the 

total absorption, scattering, and backscattering coefficients from the irradiance reflectance just beneath 
the surface (R(0-)) and the mean vertical diffuse attenuation coefficient over the first optical depth (<Kd>1) 
[Loisel and Stramski, 2000]. Note that while the particulate backscattering coefficient, bbp, is directly 
obtained from bb by removing the effect of pure water, our algorithm does not intend to decompose a into 
its different components such as the absorption by phytoplankton or by colored dissolved organic matter. 
This task can be done in a second step (e.g., Chapter 10), by assuming some spectral models for pigments 
and gelbstoff absorption coefficients, such as those already available in the literature [Bricaud et al., 
1995; Kirk, 1994; Kopelevich and Burenkov, 1977], and using least-square fitting methods or equivalent. 
The major motivation for the development of our algorithm was the assessment of total IOP from basic 
radiometric measurements by the means of a simple and fast approach that does not require any 
assumption about the spectral shapes of a, b, and bb. A detailed review of the methods used for solving 
the hydrologic-optics inverse problem was recently performed by Gordon [2002]. One of the differences 
among these methods concerns the input parameters they use. The choice of R(0-) and <Kd>1 for our 
algorithm was motivated by the fact that they can be both estimated from satellite measurements of ocean 
color. Whereas R(0-) is linked to the above surface remote sensing reflectance (Rrs) in a fairly straight 
forward manner [Mobley, 1994], the retrieval of <Kd>1  from space is based on empirical relationships 
[Loisel et al., 2001b; Mueller, 2000]. Therefore, our algorithm does not require any spectral assumptions 
about IOPs, but does require spectral relationships between <Kd>1  and Rrs, in the frame of remote sensing 
application. However, while <Kd>1  is still empirically determined from Rrs, one can image a more 
sophisticated method to retrieve <Kd>1 from space (such as an iterative scheme based on analytical 
relationships between <Kd>1 and space retrieved IOP). 

Here we test an improved version of our algorithm [Loisel and Poteau, in prep] with the IOCCG data 
sets (synthetic and in situ). After a brief overview of the model, we examine closure between data from 
both synthetic and in situ IOPs, and the retrieval of these IOPs using our model. Finally, these results are 
discussed, and compared to previous validation works performed with the Loisel and Stramski [2000] 
algorithm in various oceanic waters.  

5.2 Output and Input Parameters 
Output parameters of the model are a, b and bb averaged over the first attenuation layer. Because the 

retrieval of b is highly sensitive to the variations in the particle phase function, only a and bb can 
reasonably be retrieved from Rrs. Here, we will therefore specifically focus on the retrieval of a and bb at 
410, 440, 490, and 550 nm. These wavelengths are common to almost all ocean color sensors (with, 
however, some slight spectral shifts depending on the sensor). 

Input parameters of the model are R(0-, λ), <Kd(λ)>1, and the sun zenith angle (θ0). Within the context 
of ocean color remote-sensing application, only Rrs(λ) is available, and then both R(0-, λ) and <Kd(λ)>1 
have to be determined. The exact procedure to assess R(0-, λ) from Rrs(λ) is given in Loisel et al. [2001]. 
This step accounts for the process of reflection and refraction of light at the air-water interface, and of the 
bi-directional effect as described in Morel and Gentili [1993]. To estimate <Kd(λ)>1 from Rrs(λ), we 
originally used an empirical relationship between <Kd(490)>1 and Rrs(490)/Rrs(555), such as the one 
developed by Mueller [2000]. <Kd(λ)>1 was then estimated empirically from <Kd(490)>1. Therefore, to 
estimate a(410), a(440), a(490), bb(440), bb(490), and bb(550), we need Rrs(410), Rrs(440), Rrs(490), and 
Rrs(550). Moreover, because of the strong influence of incident light field at the air-sea interface on the 
Rrs-IOP relationships, our model does also necessarily accounts for the change of θ0. 
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5.3 Assumptions and Description 
The radiative transfer simulations used for the development of our model were run for a infinitely 

deep ocean (no bottom albedo) with an optically homogenous water column, a nearly flat sea surface 
under no wind, and in absence of inelastic scattering process. Phase function was derived from a weighted 
sum of the molecular scattering and the particle scattering phase functions proposed by Mobley et al. 
[1993]. An iterative scheme was also developed for removing the Raman contribution, that is always 
present in natural environment, from R(0-). This correction will not be applied here for consistency with 
the other models presented in this report. 

Our model is based on the following set of equations between a(λ), bb(λ) and <Kd(λ)>1, R(0-,λ) that 
can be applied to any wavelength:  
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The α and δ functions were given by:  
α = (− 0.83 + 5.34 η − 12.26 η2) + µw(1.013 – 4.124 η + 8.088 η2),  (5.3) 
δ = (0.871 + 0.4 η − 1.83 η2).      (5.4) 

Where η is the ratio of the molecular scattering to the total scattering (= bw/b), and µw is the cosine of the 
refracted solar beam angle just beneath the surface. 

Some modifications of the original version of the model are performed for a better retrieval of a and 
bb in the context of ocean color remote sensing application [Loisel and Poteau, in prep]. These 
modifications are briefly listed below:  

i) The model directly accounts for Rrs instead of R(0-)  
ii) We developed a new way to account for the effect of η on the derivation of a and bb from 

remote sensing (new parameterisations coupled with an iterative procedure). Note that the 
dependence of η on the assessment of a was not taken into account in the previous version of 
our model. 

iii) We performed some slight modifications within the α parameterisation to accounts for some 
more realistic η-b/a combinations at any given wavelength used by actual ocean color 
sensors. 

iv) We used new formulations and parameterisations to determine <Kd(λ)>1 from ratios of 
remote sensing reflectance:  

q = Rrs(440)/Rrs(550),    (5.5) 
))log()(/())()log()((

1
32110)( qq

dK ++=>< λυλυλυλ .  (5.6) 
υ1-3 are empirical parameters and are provided in Table 5.1 for the SeaWiFS bands.  

 

5.4 Results 
Using Rrs(λ) values at 410, 440, 490 and 550 nm, IOPs retrieved from the above steps were compared 

with known (synthetic) or measured (in situ) values. 
 
a. Comparison with synthetic data 
Figure 5.1 as well as Table 5.2 presents the performance of our model using Rrs(λ) and the sun angle 

as inputs to the calculation of the IOPs. In this case, the sun angle is at 30°. For the absorption coefficient 
at 410, 440, and 490 nm, the slope of the linear regression is very close to 1.0, and the coefficient of 
determination is very high (R2 ≥ 0.94). The RMSE values are 0.12, 0.119, 0.136, and 0.138 for a(410), 
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a(440), a(490), and a(550), respectively. Note that the performance of the model is slightly degraded at 
550 nm compared to other wavelengths. The retrieval of the absorption coefficient at 550 nm is 
challenging as it is strongly dominated by absorption by pure sea water, and because variations of Rrs are 
mostly due to the backscattering coefficient in this spectral domain. The RMSE values for bb(λ) at 440, 
490, and 550 nm are very similar to those of a(λ), but the slope slightly differ from 1.0 (0.902, 0.935 and 
0.973 at 440, 490, and 550 nm, respectively). Note that the RMSE values for bb are almost similar for 
every wavelength. Also, the total absorption and backscattering coefficients are retrieved with the same 
precision when the sun angle is fixed at 60° (not shown here). Most of the a(λ) and bb(λ) errors appear at 
the high end of the data range, where the retrieval of <Kd(λ)>1 from Rrs(λ) is generally much more 
doubtful. For instance, by restricting the data set to the a(440) values lower than 0.3 m-1, which includes 
most oceanic waters, the RMSE drops by a factor of 2 (from 0.119 to 0.058). The same remark holds at 
other wavelengths. When measured <Kd(λ)>1  is explicitly taken into account as input parameter, the 
performance of the model is greatly enhanced. For example, the RMSE for a(410), a(440), a(490), 
a(550), and bb(490) are 0.0445, 0.0102, 0.0131, 0.0101, and 0.0324, respectively (not shown here). 

 
b. Comparison with in situ data 
Figure 5.2 and Table 5.3 show that there is a reasonably good closure between the modelled and the 

measured values of the absorption coefficients. The RMSE are always lower than 0.2. In the blue-green 
spectral domain the mean RMSE value is 0.166. Compared to the synthetic data set, the RMSE increases 
by a factor of 1.6, 1.6, and 1.24 at 412, 443, and 490, respectively. Note that, RMSE drops from 0.169 to 
0.142 by restricting the data set to the a(490) values lower than 0.3 m-1. Interestingly, the RMSE at 550 is 
slightly better with the in situ data set, than with the synthetic data set. 

5.5 Conclusions 
The retrieval of both a(λ) and bb(λ) is achieved with excellent accuracy in the blue green spectral 

region when both R(0-) and <Kd>1 are measured (the mean RMSE value in this spectral domain is 0.0195 
for the absorption coefficient). When only Rrs is available as input parameter, the results are obviously 
degraded, but are still very satisfactory: for the synthetic data set, the mean RMSE value over the blue-
green part of the spectrum for a and bb is 0.128 and 0.134, respectively. By comparison with in situ data, 
one may emphasis that our model is able to predict a with a mean RMSE value of 0.166 over the spectral 
domain of interest for ocean color related studies. The performance of our model is governed, to a certain 
extant, by the accuracy of the <Kd>1 assessment from space. Different approaches are actually tested to 
improve the retrieval of <Kd(λ)>1 from Rrs(λ) (Loisel and Poteau, in prep). Preliminary results for the 
retrieval of both a and bb are very promising. 

The results presented here are consistent with previous comparisons performed in oceanic and coastal 
waters [Dupouy et al., 2003; Loisel et al., 2001b; Melin et al., 2002]. For example, based on field data 
collected in waters off southern California, and in waters surrounding Europe, Loisel et al. [2001b] 
showed that the average value and the standard deviation of the relative difference between the measured 
and the retrieved absorption coefficients from 412 to 555 nm are 26% and 16%, respectively. The new 
version of the model significantly improves the retrieval of a and bb, especially in the green part of the 
spectrum and at the extreme values (Loisel and Poteau, in prep). 
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Table 5.1. Parameters for deriving <Kd(λ)>1 from remote sensing reflectance (Eq.5.6). 
 υ1 υ2 υ3

410 -4.7636 -2.1269 3.1752 
440 -4.6216 -2.3587 3.1235 
490 -3.6636 -2.3116 2.5648 
550 -2.0152 -1.5296 1.7751 

 
 
Table 5.2. RMSE and regression (Type II) results between the derived and the known values of 
IOP for synthetic data and for θ0 = 30°. Rrs(λ) at 410, 440, 490 and 550 nm are used as inputs for 
the derivation of IOP. N is the number of data tested, while n is the number of valid retrieval. 

 N n intercept slope R2 RMSE bias 
a(410) 500 500 0.029 0.977 0.973 0.120 0.043 
a(440) 500 500 -0.007 0.990 0.966 0.119 -0.001 
a(490) 500 500 -0.017 0.980 0.939 0.136 0.000 
a(550) 500 500 -0.067 0.927 0.818 0.138 -0.002 
bb(440) 500 500 -0.173 0.902 0.924 0.123 0.003 
bb(490) 500 500 -0.114 0.935 0.917 0.140 0.007 
bb(550) 500 500 -0.028 0.973 0.934 0.138 0.023 

 
 

Table 5.3. RMSE and regression (Type II) results between the derived and the known values of 
IOP for in situ data. Rrs(λ) at 412, 443, 490 and 555 nm are used as inputs for the derivation of 
IOP. N is the number of data tested, while n is the number of valid retrieval. 

 N n intercept slope R2 RMSE bias 
a(412) 656 656 -0.052 1.013 0.847 0.186 -0.064 
a(443) 656 656 -0.108 0.997 0.842 0.198 -0.105 
a(490) 656 656 -0.122 0.953 0.823 0.169 -0.069 
a(555) 656 656 -0.126 0.897 0.670 0.111 -0.017 
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Figure 5.1. Comparison of the derived total absorption coefficients with the synthetic data, for a sun zenith angle at 
30°, and at different wavelengths. Rrs(λ) at 410, 440, 490 and 550 nm are used as inputs for the derivation of a and 
bb. 

 
 

 28



 
Figure 5.2. Comparison of the derived and the measured total absorption coefficients at different wavelengths, in 
situ data. Rrs(λ) at 412, 443, 490 and 555 nm are used as inputs for the derivation of a. 
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Chapter 6. The MERIS Neural Network Algorithm 

Roland Doerffer and Helmut Schiller 

6.1 Introduction 
In this chapter we present the results of the MERIS Case 2 water algorithm for the IOCCG algorithm 

inter-comparison. This algorithm is an artificial neural network (aNN) inversion procedure [Doerffer et 
al., 2002; Doerffer and Schiller, 2000; Doerffer and Schiller, 2006; Schiller and Doerffer, 2005], which is 
used in the ground segment processor of MERIS. This instrument is operated on board the Earth 
observation satellite ENVISAT of the European Space Agency (ESA), which was launched on March 1, 
2002. The aNN algorithm was selected because of its capability to invert directional water leaving 
radiance reflectance directly into absorption and scattering coefficients or concentrations of different 
constituents as present in coastal waters with high efficiency for mass production. Due to the fixed 
architecture of the aNN only the simulated IOCCG data set could be processed for inter-comparison. 

6.2 Description of the MERIS Case 2 Water Algorithm 
The MERIS Case 2 water algorithm is a neural network, which takes the log of the above-surface 

remote-sensing reflectance (Rrs) of eight of the fifteen MERIS bands (i.e. after atmospheric correction, 
Bands 1-7 and Band 9) as well as three angles (solar zenith, viewing zenith, azimuth difference) as input 
and provides the log of the following three optical coefficients as output: pigment absorption (aph(442)), 
absorption of gelbstoff and bleached suspended matter (adg(442)), and scattering coefficient of all 
particles (bp(442)), all at 442 nm (MERIS Band 2). The optical coefficients are then used to compute the 
concentrations of chlorophyll-a and total suspended matter dry weight. These are, together with the 
gelbstoff absorption, the three Case 2 water products of MERIS. 

The neural network is trained with simulated Rrs spectra. About 30000 spectra are used to cover a 
large range from Case 1 and Case 2 waters as well as different observation and solar angles (see Table 
6.1). The simulation of Rrs(λ) is performed using Hydrolight radiative transfer model. The model is set up 
in the following way: 

• No bottom reflection 
• Homogenous vertical distribution of water constituents 
• No inelastic scattering 
• Waves according to 3 m/s wind 

Standard clear atmosphere with oceanic aerosol and different solar zenith angles (0 – 80o from zenith) 
was used to simulate incoming solar light. The detector captures the directional water leaving radiance  
and downwelling irradiance just above the surface for computing the directional Rrs. For the comparison 
here only the nadir Rrs was used. The part controlling the success of the simulation and training of the 
aNN is the bio-optical model. For the MERIS aNN algorithm, it is based on measurements of the IOPs, 
i.e. absorption and scattering. These data are mainly from European waters, dominated by measurements 
in the North Sea.  

The bio-optical models used represent mean conditions and variabilities (see Table 6.1). For each 
case of the simulations, the optical properties are varied randomly according to the standard deviations of 
the measured absorption and scattering spectra. For the absorption of gelbstoff (ag) and bleached particles 
(ad) as well as for the total particle scattering (bp), the wavelength exponent is varied according to the 
measured standard deviations; while for the absorption spectra of phytoplankton pigment (aph(λ)) one out 
of 223 different measured spectra is selected randomly for each simulation. The absorption and scattering 
coefficients at 442 nm are randomly selected from the log scale from the range (see Table 6.1), while the 
viewing and sun angles are selected randomly from the linear scale. The simulated spectra are 
furthermore randomly degraded by using an estimated error of the instrument and the atmospheric 
correction. Rrs spectrum that is out of the training range is detected using a forward neural network. This 
network takes the optical coefficients from the first backward network as input to compute Rrs spectrum. 
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This spectrum is then compared with the measured one. If the Chi2 deviations of all eight bands are above 
a certain level [Doerffer and Schiller, 2000], the spectrum is classified as out of the training range. 
However, this test was not used for the IOCCG data sets. 

Uncertainties in atmospheric correction over water with low water leaving radiance sometimes result 
in negative reflectance. The neural network easily allows excluding these incorrect values by introducing 
a cut-off. In the MERIS aNN algorithm this cut-off was set to an Rrs value of 0.000955 sr-1. All 
reflectance with value below this threshold are clipped to this value. The neural network is trained in the 
same way. 

6.3 aNN Results with the IOCCG Data Sets  
The aNN algorithm we have tested here has 5 hidden layers with 45, 16, 12, 8 and 5 neurons 

respectively. It is the algorithm which is presently used for reprocessing all MERIS data [Doerffer and 
Schiller, 2006]. aph(442), adg(442) and bbp(442) (which is assumed as 1.5% of bp(442)) were retrieved by 
applying this algorithm to the IOCCG data sets. Note that, due to wavelength mismatch, the aNN 
algorithm (designed specifically for MERIS) was not applied to the in situ part of the IOCCG data sets. 
Before applying the aNN algorithm, the reflectance spectra for the MERIS bands were linearly 
interpolated from the data set, which has a 10 nm spacing. Also the optical properties of the test data set 
were interpolated for 442 nm. It is necessary to point out that the IOCCG synthetic data set, though 
simulated with Hydrolight radiative transfer code also, has been computed totally independent of the data 
used for training the aNN. There are no relationships between the two data sets.  

Figure 6.1 compares the derived properties (for data of 30o solar zenith angle) with their 
corresponding known values, while Table 6.2 summarizes results from statistical analysis. For the entire 
range of total absorption and backscattering coefficients the RMSE values are 0.052 and 0.082 (see Table 
6.2), respectively, with slope values nearly 1.0. Similar results were also obtained for the synthetic data 
set with the Sun at 60o from zenith (not shown here). These results indicate that the aNN algorithm 
accurately retrieved those optical properties that determine the remote sensing reflectance. When the total 
absorption is decomposed into the components of water, gelbstoff and phytoplankton pigment, the scatter 
is much larger (RMSE values are 0.230 and 0.271 for adg(442) and aph(442), respectively) and the 
relationships deviate from linearity in the middle concentration range. The scatter is obvious due to the 
fact that the bio-optical models used for the IOCCG synthetic data set are different from those used for 
training the aNN. This is presumably also true for the maximum in difference at the middle of the data 
range. Here the separation between absorption by dissolved organic matter and phytoplankton pigments is 
most critical. Since this is also normally the case in nature, it indicates that total absorption and total 
backscattering are more robust variables, which should be derived from reflectance spectra in addition to 
other IOPs or concentrations of different water constituents. 
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Table 6.1. Variability and range of the optical properties used for the simulation of water leaving radiance 
reflectance spectra that were used to train the aNN. 
Component / property value range 
Gelbstoff absorption wavelength exponent  [nm-1] 0.014 ± 0.002 
Bleached particle absorption wavelength exponent [nm-1] 0.008 ± 0.005 
Particle scattering wavelength exponent 0.4 ± 0.2 
White particle scattering wavelength exponent 0.0 
Phytoplankton pigment absorption spectra random selection from > 200 

absorption spectra, normalized at 
442 nm (MERIS Band 2) 

Gelbstoff absorption (ag) at 442 nm [m-1] 0.005 - 5.0  
Particle scattering (bp) at 442 nm [m-1] 0.005 - 30.0  
White particle scattering (bpw) at 442 nm [m-1] 0.005 - 30.0  
Phytoplankton pigment absorption (aph) at 442 nm [m-1] 0.001 -  2.0  
Minimum particle scattering at 442 nm [m-1] 0.25 aph(442) 
Bleached particle absorption 0.1 bp(442) + δ*0.03 bp(442) 
Sun zenith angle [degree] 0 - 80  
Viewing zenith angle [degree] 0 - 50  
Difference between sun and viewing azimuth angle [degree] 0 - 180  
*δ is a random value in the range of 0-1. 

 
 

Table 6.2. RMSE and regression (Type II) results for the synthetic data set (30o solar zenith angle). IOPs 
were retrieved with Rrs values at 412, 442, 490, 510, 560, 617, 665 and 708 nm. N is the number of data 
tested, while n is the number of valid retrieval. 

 N n Intercept slope R2 RMSE bias 
adg(442) 500 500 -0.210 0.959 0.959 0.230 -0.174 
aph(442) 500 500 0.407 1.163 0.943 0.271 0.202 
a(442) 500 500 -0.009 1.006 0.994 0.052 -0.013 

bbp(442) 500 500 -0.038 0.993 0.980 0.082 -0.024 
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Figure 6.1 Comparison between aNN derived IOPs and the known IOPs, for the IOCCG synthetic data set 
(the Sun at 30o from zenith). aNN used Rrs values at 412, 442, 490, 510, 560, 617, 665 and 708 nm to 
retrieve the IOPs. 
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Chapter 7. The Linear Matrix Inversion Algorithm 
Paul Lyon and Frank Hoge 

7.1 Background 
The Linear Matrix Inversion algorithm was developed by Hoge and Lyon [1996]. This algorithm uses 

remote-sensing reflectance at three wavelengths to simultaneously derive three major unknowns 
algebraically. Due to its linear matrix nature, it is efficient in processing satellite images. In the past 
decade, this algorithm has been applied to data taken from many regions around the world [Hoge and 
Lyon, 1996; Hoge and Lyon, 1999; Hoge et al., 2001]. Never the less, since some of the parameters used 
in the algorithm were developed based on measurements made mainly from the Mid Atlantic Bight and 
off the East Coast of the United States, further refinement and improvement is expected in the coming 
years.  

7.2 Inputs of LMI 
The algorithm uses remotely sensed reflectance, Rrs, propagated through the air/water interface, into 

semi-analytic reflectance model developed by Gordon et al. [1988]. The present version of the algorithm 
that is optimized for use with satellite data uses only three inputs, Rrs(412), Rrs(490) and Rrs(555). The 
algorithm also has four empirical parameters, described below, that determine the spectral shapes of the 
individual IOP spectrum. 

7.3 Basic Assumptions of LMI 
There are three assumptions that are fundamental to this inversion technique. First, it is assumed that 

the semi-analytic equation, shown in Eq. 7.1 below, is a good description of the relationship between the 
IOPs and the reflectance over a wide range of environments. Second, it is assumed that globally the 
optically significant varying IOPs are, absorption coefficients of phytoplankton and CDOM (including 
detritus), and backscattering coefficient of all particles (scattering constituents other than water). Thus, an 
algorithm based on properly formulated spectral models of these three principal IOPs may be applied to 
many different water masses. And, third, it is assumed that, using a proper combination of wavelengths, 
the three major IOPs can be resolved if the following conditions are met. The wavelengths used should 
maximize the mathematical differences between the spectral shapes of the three IOPs. And, within each 
IOP, a stable spectral dependence must be maintained or the modulations of the IOP spectral shapes need 
to be empirically adjusted to reflect their natural variability. 

7.4 Approach 
7.4.1 Algorithm mathematical description 

As stated above, the algorithm is based on the reflectance model developed by Gordon et al. [1988],  
2
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Here rrs is the subsurface remote-sensing reflectance, which can be easily calculated from the remote-
sensing reflectance (Rrs) provided by any sensor. g1 = 0.0949 and g2 = 0.0794 are model parameters for rrs 
[Gordon et al., 1988].  bb and a are the total backscattering coefficients and total absorption coefficient, 
respectively. Defining u as  
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+
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we get a quadratic equation with u as the variable,   
01

2
2 =−+ rsrugug ,    (7.3) 
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which can easily be solved for u using the quadratic formula. Since bb is a sum of bbw and bbp, a is a sum 
of aw, aph, and adg, and aw and bbw are known constants, a linear system with aph, adg and bbp as variables 
can then be constructed by re-arranging u [Hoge and Lyon, 1996]:  

a a b v a b vph dg bp w bw( ) ( ) ( ) ( ) ( ) ( ) ( )λ λ λ λ λ λ λ+ + = − − ,        (7.4) 
with 

u
11 −≡ν .    (7.5) 

For an exact solution, three different wavelengths are used to form a system of three equations with 
three unknowns. After spectrally modeling the three IOP variables with values at a reference wavelength 
(λr = 410 nm) the equation becomes, 

a a a a b b v a b vph ph r dg dg r bp bp r w bw
◊ ◊ ◊+ + = − −( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )λ λ λ λ λ λ λ λ λ λ
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.     (7.6)  

Here  and  represent the normalized optical properties at λ),(λ◊
pha )(λ◊

dga )(λ◊
bpb r (see 7.4.2). Eq. 7.6 can 

now be used to construct the linear matrix that could be inverted to derive the IOPs consistent with the 
input Rrs and the spectral models, 
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Note that the inverse matrix must be computed for each data point since input data, Rrs(λ), is on both sides 
of the equation (contained in ν(λ)). Any standard method of solving this system of equations can be used. 
The Hoge/Lyon inversion algorithm uses lower/upper deconvolution [Hoge and Lyon, 1999]. 
 
7.4.2 IOP spectral models 

To mathematically solve Eq. 7.7, spectral models are required for the three IOP variables. It is 
important to select wavelengths where each IOP tends to co-vary among wavelengths [Hoge and Lyon, 
1996]. Based on many different published phytoplankton absorption spectra, phytoplankton absorption 
coefficients at 412, 490 and 555 nm are found to co-vary well. A Gaussian function centered at 443 nm, 
with a half-max-full-width (HMFW) of 70 nm (σ in Eq. 7.8 below) is used to model aph(λ). No 
improvement in the retrieved IOPs was found when the HMFW parameter σ was empirically varied.  
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The combined absorption coefficient of detritus and gelbstoff, adg(λ), is modeled with an exponential 

decay function [Bricaud et al., 1981; Carder et al., 1991; Roesler et al., 1989]:   
a a edg dg r

S r( ) ( ) ( )λ λ λ λ= − − .     (7.9) 
S is the spectral slope and is set to 0.018 (nm-1) for all inversions discussed within this chapter. 

The total particulate backscattering coefficient, bbp(λ) is modeled as a power-law function of 
wavelength, 
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with exponent Y empirically estimated as follow,  

Y m R
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mrs
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Sensitivity studies have found that the magnitude of parameter Y  affects the bbp and the adg retrievals 
more than the aph retrievals [Hoge and Lyon, 1996]. The empirical parameters, m1 (0.8) and m2 (0.2) have 
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been optimized for use with global satellite data, such that errors in the derived IOPs caused by this 
equation are minimized in a global sense. These parameters can also have regional values to achieve 
better regional results.  

7.5 Results 
7.5.1 Synthetic data set  

Figure 7.1 shows the agreement between known and derived IOPs. There is a logarithmic offset in the 
aph(410) retrievals and several outliers, yet the agreement is evident as shown in Table 7.1 by the 
correlation of determination (R2) of 0.877 and the slope close to 1.0, and an RMSE of 0.222 (n = 484). 
Note that the statistics presented in Table 7.1 are affected by the outliers that lie below the one-to-one 
line, so that the larger population above the line could still be corrected by using an offset in log space. 
This infers, of course, that regional or specific tuning of this and any algorithm may improve its 
performance for similar settings. 

The agreement between input and output adg(410) is better than that of aph(410), with correlation of 
determination as 0.958 and slope about 1.1, and RMSE of 0.16 (Table 7.1). Much better results are 
achieved for the total absorption and particle backscattering coefficients, with both R2 and slope values 
close to 1.0 and RMSE of 0.14 and 0.15, respectively.  

The smaller number (n) in the statistics analysis (Table 7.1 and Table 7.2) represents all the data 
points that the inversion successfully processed (all IOPs with values greater than zero, or where the 
output a(410) < 10.0 m-1). Data points with negative IOP retrievals were excluded from the statistics and 
the figures, as they are physically unrealistic values that are filtered out automatically. In normal 
operation of the linear matrix inversion, retrievals where adg(410) > 1.0 m-1 or aph(410) > 1.0 m-1 are 
considered suspect. To allow readers to compare the results of this algorithm with those of other 
techniques discussed in this report, however, inversions with a(410) with values up to 10.0 m-1 are 
included in the figures and tables.  
 
7.5.2 In situ data set  

For the in situ data set, the regression statistics are provided in Table 7.2. Figure 7.2 compares 
retrieved aph(412), adg(412), a(412) and a(490) with their measured values, respectively. There were no in 
situ bbp data for comparison. 

Apparently the retrievals of aph and adg scattered much more than that of the simulated data set. This 
might be due to the measurement uncertainties that are common in field-measured data. Also, large 
portions of the data were taken in coastal waters, and real in situ properties may not follow the limited 
combinations of spectral shapes used in the simulated data set.   

Again, better results are obtained for the total absorption coefficients. This suggests that it is easier to 
retrieve the total absorption using this technique than it is to resolve the separate components of the total 
absorption.   

7.6 Discussion 
7.6.1 Overall results of the linear matrix inversion algorithm 

As described above, the retrievals of the total absorption are quite good for both in situ and simulated 
data sets. The separation of the absorption into contributions from phytoplankton and dissolved organic 
matter are less accurate, but still retrieved well. The spectral model parameters used in the linear inversion 
of both simulated and in situ data sets preformed well in spite of the fact that the true spectral shapes at 
the wavelengths used in the inversions varied over dramatic ranges, as shown in Fig. 7.1. These results 
demonstrate that an exact solution derived from a 3-by-3 inversion, can be optimized to retrieve IOPs at a 
reference wavelength. The linear inversion method has both weaknesses and strengths associated with its 
use, which are briefly described below. 
 
7.6.2 Algorithm weaknesses 
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One set of weakness in this algorithm is related to the parameterization of the IOP spectral shapes.  
For example, the empirical adjusted bbp spectral model and the fixed spectral models for aph and adg will 
not properly represent all combinations of water constituents, especially when contributions from 
optically significant constituents not well described by the three IOP basis vectors are present. The fixed 
spectral shape of aph limits the accuracy of IOP retrievals since true phytoplankton absorption spectra vary 
dramatically (e.g., Hoepffner and Sathyendranath [1991]). Also, the adg spectral slope coefficient, S, 
should be varied with type of water mass. 

As shown in Figures 7.1 and 7.2, the algorithm has been optimized to retrieve values at 412nm. The 
IOPs derived at 412 nm can be translated to any other wavelength through the IOP spectral models but the 
accuracy of the values derived at the other wavelengths will be driven by how well the spectral models 
reflect the true characteristics of the in water constituents. Methods developed by Wang et al. [2005] 
should be implemented to help describe the range of equally valid retrievals of IOPs. Also, there is no 
error checking for unreasonable inputs (such as negative Rrs) and for doubtful retrievals (e.g., very large 
IOPs). 

The need for the 412 nm band to separate the CDOM absorption from the phytoplankton absorption 
exposes the algorithm to potentially large errors in input Rrs(412), caused by the fact that in coastal region 
accurate atmospheric correction at the shorter wavelengths is very difficult to achieve. This is a 
fundamental problem for all semi-analytical algorithms that attempt to use Rrs(412) to separate 
phytoplankton and CDOM absorption coefficients. 
 
7.6.4 Algorithm strengths 

There are also several advantages gained by using the exact linear inversion approach. The most 
important feature is that the algorithm limits errors in IOP spectral models by using wavelengths where 
each IOP tends to co-vary. Hyperspectral data was tested and it was found that the best agreement 
between the retrieved IOPs and truth data was achieved by using the fewest number of wavelengths 
possible. Therefore, the SeaWiFS bands, 412, 490 and 555 nm, or the closest to those bands on other 
sensors, are used in this algorithm. By using this simplified approach, we sacrifice deriving information 
about more constituents in the water but minimize the errors caused by poor spectral models to describe 
highly variable portions of the IOP spectra.  

The inversion is computationally fast and no iteration is needed. Large data set processing is limited 
more by the rate of data to be read and written to disk, than by the computation of the IOP outputs.   

Inputs from several different satellites that are contemporaneous and geographically coincident can be 
used in the inversion to produce a multi satellite blended product. In this case, the same three wavelengths 
(or similar wave bands) are used from each satellite to realize the benefit of averaging out the 
asymmetrical errors in Rrs in an over determined linear inversion, while still maintaining the inter-
wavelength co-variance for each IOP.   

With fewer spectral model parameters to adjust, the algorithm is easy to tune given known or 
expected values. This allows for tuning of the algorithm to specific regions where characteristics of 
constituent in the water are constrained temporally and spatially, so regionally optimized versions of the 
algorithm can be developed, without changing the core mathematical implementation. 
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Table 7.1: RMSE and regression (Type II) results of the synthetic data set (θ0 = 30°). IOPs were 
retrieved with Rrs values at 410, 490 and 550 nm as inputs. N is the number of data tested, while n 
is the number of valid retrieval. 

 N n intercept slope R2 RMSE bias 
aph(410) 500 484 0.053 0.989 0.877 0.222 0.068 
aph(490) 500 484 0.114 0.997 0.891 0.23 0.118 
adg(410) 500 484 0.069 1.052 0.958 0.161 0.03 
adg(490) 500 484 -0.032 1.051 0.921 0.236 -0.095 
a(410) 500 484 0.067 1.036 0.964 0.14 0.045 
a(490) 500 484 0.012 1.007 0.942 0.133 0.005 

bbp(410) 500 484 0.043 1.019 0.922 0.15 0.007 
bbp(490) 500 484 0.008 1.018 0.936 0.149 -0.027 

 
 

Table 7.2: RMSE and regression (Type II) results of the in situ data set. IOPs were retrieved with 
Rrs values at 412, 490 and 555 nm as inputs. N is the number of data tested, while n is the number 
of valid retrieval. 

 N n intercept slope R2 RMSE bias 
aph(412) 656 642 0.336 1.208 0.654 0.332 0.02 
aph(490) 656 642 0.454 1.231 0.686 0.325 0.078 
adg(412) 656 642 -0.142 1.007 0.653 0.325 -0.149 
adg(490) 656 642 -0.315 0.98 0.599 0.427 -0.284 
a(412) 656 642 -0.082 0.96 0.872 0.163 -0.045 
a(490) 656 642 -0.035 0.994 0.804 0.168 -0.028 
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Figure 7.1. Comparison between retrieved and simulated IOPs for a sun zenith angle of 30°. IOPs were 
retrieved using Rrs values at 410, 490 and 550 nm. 

 39



 

 
Figure 7.2. Comparison between retrieved and in situ IOPs. IOPs were retrieved using Rrs values at 410, 
490 and 555 nm. 
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Chapter 8. Over Constrained Linear Matrix Inversion with Statistical Selection 
Emmanuel Boss and Collin Roesler 

8.1 General Description 
Semi-analytic inversions of remotely sensed reflectance have been available since 1995 [Roesler and 

Perry, 1995]. However, a procedure that provides an uncertainty of the inverted parameter for each 
individual spectrum based on uncertainties in the remote sensing data and the model has only recently 
been devised [Wang et al., 2005]. 

We use the same model philosophy as in Wang et al. [2005] with a slight modification (we use a 
single phytoplankton absorption spectrum). We assume a known relationship between rrs and the 
absorption and backscattering coefficients [Gordon et al., 1988]: 

( ) ( )
( ) ( )

( )
( ) ( )

2

0794.00949.0
)0,(
)0,(

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

+
+

== −

−

λλ
λ

λλ
λ

λ
λλ

b

b

b

b

d

u
rs ba

b
ba

b
E
Lr .  (8.1) 

The quadratic form is important for high rrs(λ) values [Garver and Siegel, 1997]. Gordon et al. [1988] 
estimated that the model errors in Eq. 8.1 are less than 10%.  

The total absorption coefficient is partitioned as follows:  
  a(λ)  = aw(λ)  + aph(λ)  + adg(λ),     (8.2) 

where the subscripts w, ph, and dg designate sea water, phytoplankton, and the combined contribution of 
CDOM and detrital material. The spectral absorption coefficient aw(λ) for sea water is computed for given 
salinity and temperature based on Pope and Fry [1997] and Pegau et al. [1997]. 

The spectral absorption coefficient of phytoplankton is assumed to be: 
)()()( 0 λλλ += phphph aaa ,    (8.3) 

where  is an average of normalized phytoplankton absorption spectra [Roesler and Perry, 1995] 
and λ

)(λ+
pha

0 is commonly set as 440 nm. 
The spectral absorption coefficient of the combined absorption by CDOM and detritus is: 

adg(λ) = adg(λ0) exp(-S(λ – λ0)),                                (8.4) 
where S is the spectral slope of the combined absorption coefficient. This function has been found to be 
an adequate representation of measured CDOM and detritus absorption coefficient with S ranging 
between 0.008 to 0.023 nm-1 (e.g., Roesler et al. [1989]). 

The total backscattering coefficient, bb(λ), is approximated by  
              bb(λ)  = bbw(λ)  + bbp(λ).                    (8.5) 

The spectral backscattering coefficients of sea water (bbw(λ)) are computed for a given salinity based on 
the interpolation of the data of Morel [1974] as in Boss and Pegau [2001].  

The spectral particle backscattering coefficient is assumed to obey: 
bbp(λ) = bbp(λ0) (λ /λ0) –Y.                       (8.6)  

This formulation is consistent with many previous studies, though without in-water validation. 
To account for variability in space and time of the spectral shapes of the IOPs we perform the rrs 

inversion allowing the shape parameters (spectral slope S and spectral slope Y) to vary within most of 
their observed range of variability (0.01 ≤ S ≤ 0.02, 0 ≤ Y ≤ 2). For each parameter we use 11 different 
values with equal intervals between their maximum and minimum, resulting in 112 = 121 different 
inversion computations for each rrs.  

It can be shown that with known spectral shapes, Eq. 8.1 can be solved to obtain bbp(λ0), adg(λ0), and 
aph(λ0) using a linear matrix inversion technique [Hoge and Lyon, 1996]. When the number of wavelength 
exceeds the number of unknowns (3 in our case), this solution is the best solution in a least-square sense 
[Press, 1992].  

From all the solutions to Eq. 8.1 we select the solution for which adg(440) and aph(440) > -0.005 m-1 

and bbp(440) > -0.0001 m-1 (slightly negative values are accepted to compensate for finite uncertainties in 
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measurements and calibrations). We further restrict ourselves to the solutions whose reconstructed rrs 
(calculated by substituting the solutions into Eq. 8.1) obeys: 

 |rrs,reconstucted(λ) - rrs,known(λ)|/rrs,known(λ) < 0.1 or  0.2 for every λ. 
These criteria can result in cases where no solution could be found for a given rrs. The choice of the 
criteria should be driven by knowledge of uncertainties in observed rrs as well as the assumed spectral 
shapes (in particular that of phytoplankton).  

We thus present the results from the two different solution selection criteria in the tables, but only the 
criteria of 0.1 in the plots. We provide uncertainties for the solutions on the plots based on the distance 
between the 84th and 16th percentile of the obtained solutions (~+/- one standard deviation for a normal 
distribution). 

Given the application to remote sensing we used only the Rrs values at 410, 440, 490, 510 and 550 nm 
(or nearby for the in situ data set).  

8.2 Results and Discussion with IOCCG Data Sets 
Simulated data set: Over the large dynamic range of the data set the inversion fairs rather well for 

both 10 and 20% criteria (Fig. 8.1, Tables 8.1 & 8.2). Not surprisingly the stringent criteria provide less 
but better solutions (in terms of RMSE error and bias). The agreement between derived and known IOPs 
can be further improved by choosing other wavelengths (e.g., 410 nm for adg and 550 nm for bbp) and by 
adding more wavelengths (as we have demonstrated in Wang et al. [2005], for example, adding a 670 nm 
channel, the successful retrieval increased from 408 to 472 with the 10% criteria). It is encouraging that 
the uncertainty estimates for both adg(440) and bbp(440) intersect the 1:1 line suggesting the constraint 
criteria is working well.  

In situ data set: Large uncertainties in inverted parameters (in particular aph) suggest that some of 
these data have many possible solutions and thus large uncertainties for a given Rrs(λ). Some data points 
are way off the line, possibly due to large sun angles and/or poor measurements.  

In Wang et al. [2005] we used a more complicated phytoplankton absorption formulation which 
increased the computation by a factor larger than 10. We found that this complexity did not improve the 
match ups significantly and thus decided here to use a single phytoplankton absorption function. 

It can easily be demonstrated that a different choice of wavelengths for inversions or a different 
choice of wavelength for the parameter can significantly improve/degrade the retrieval. Thus, if we are 
after adg, inverting a near UV wavelength provides the best inversion; while for bb, it is in the NIR that the 
inversion does best; as long as adequate Rrs at those wavelengths could be available. 

8.3 Summary 
The inversion method presented here was designed to provide uncertainty estimates of inversion 

products and is dependent on the reality of the assumptions of the model. For example, it is well known 
that Eq. 8.6 is likely not a good representation of particulate spectral backscattering, yet it is the only 
simple model currently available. Much work is still needed to understand spectral IOPs, and such work 
will, without a doubt, improve our ability to retrieve in-water parameters from remote sensing.  

 

 

 

 

 

 

Table 8.1. RMSE and regression (Type II) results for the synthesized data set. Statistics of comparison of 
median of all possible inversion solution with a 10% agreement criterion. Rrs values at 410, 440, 490, 510 
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and 550 nm were used as inputs for IOP retrieval. N is the number of data tested, while n is the number of 
valid retrieval. 
 N n intercept slope R2 RMSE bias 

a(440) 500 408 -0.001 0.995 0.966 0.106 0.003 
bbp(440) 500 408 -0.055 0.972 0.935 0.125 0.003 
adg(440) 500 408 -0.021 0.982 0.956 0.141 -0.001 
aph(440) 500 408 0.160 1.113 0.927 0.159 -0.002 

 
 
Table 8.2. RMSE and regression (Type II) results for the synthesized data set. Statistics of comparison of 
median of all possible inversion solution with a 20% agreement criterion. Rrs values at 410, 440, 490, 510 
and 550 nm were used as inputs for IOP retrieval. N is the number of data tested, while n is the number of 
valid retrieval. 

 N n intercept slope R2 RMSE bias 
a(440) 500 438 -0.074 0.938 0.946 0.145 -0.025 

aph(440) 500 438 -0.025 1.014 0.878 0.201 -0.044 
adg(440) 500 438 -0.082 0.942 0.944 0.169 -0.023 
bbp(440) 500 438 -0.186 0.925 0.898 0.168 -0.034 

 
 
Table 8.3. RMSE and regression (Type II) results for the in situ data set. Statistics of comparison of 
median of all possible inversion solution with a 10% agreement criterion. Rrs values at 412, 443, 490, 510 
and 555 nm were used as inputs for IOP retrieval. N is the number of data tested, while n is the number of 
valid retrieval. 

 N n intercept slope R2 RMSE bias 
a(412) 656 504 -0.022 0.942 0.872 0.146 0.029 
a(443) 656 504 -0.029 0.969 0.849 0.150 0.001 

adg(443) 656 504 -0.018 1.043 0.705 0.259 -0.072 
aph(443) 656 504 0.068 1.031 0.613 0.285 0.024 

 
 
Table 8.4. RMSE and regression (Type II) results for the in situ data set. Statistics of comparison of 
median of all possible inversion solution with a 20% agreement criterion. Rrs values at 412, 443, 490, 510 
and 555 nm were used as inputs for IOP retrieval. N is the number of data tested, while n is the number of 
valid retrieval. 

 N n intercept slope R2 RMSE bias 
a(412) 656 629 -0.036 0.939 0.867 0.157 0.019 
a(443) 656 629 -0.039 0.977 0.842 0.165 -0.017 

adg(443) 656 629 0.086 1.069 0.63 0.298 -0.013 
aph(443) 656 629 -0.057 1.014 0.714 0.266 -0.075 

 
 
 
 
 
 
 

 43



Figure 8.1. Comparison of inverted and the simulated data set (30 degrees sun angle) for aph(440), adg(440), a(440), 
and bbp(440) for the 10% criteria (stats in Table 8.1). Vertical lines denote the 90% confidence intervals in the 
solutions. Rrs values at 410, 440, 490, 510 and 550 nm were used as inputs for IOP retrieval. 
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Figure 8.2. As Fig.8.1, for the in situ data set.  
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Chapter 9. MODIS Semi-Analytic Algorithm for IOP 
Kendall L. Carder, Jennifer P. Cannizzaro, Robert F. Chen, ZhongPing Lee  

9.1 Introduction 
The Moderate-Resolution Imaging Spectrometer (MODIS) semi-analytic algorithm (Carder_MODIS here 

after) [Carder et al., 2004; Carder et al., 1999] derives chlorophyll-a concentrations and inherent optical 
properties (aph(λ), adg(λ) and bbp(λ)) from remote-sensing reflectance spectrum (Rrs(λ)). This algorithm is 
composed with an algebraic portion and an empirical portion. The algebraic portion is for waters with low 
absorption (mostly oceanic waters) while the empirical portion is for waters with high absorption (mostly 
coastal waters). The main characters of this algorithm include that it responds to the large global variability 
observed in 1) chlorophyll-specific absorption coefficients (a*

ph(λ)), and 2) gelbstoff-to-phytoplankton 
absorption ratios. This algorithm utilizes differences between measured sea-surface temperatures and known 
nitrate-depletion temperatures (NDT) [Kamykowski, 1987; Kamykowski and Zentara, 1986] to select the most 
appropriate a*

ph(λ) for a given bio-optical domain. The algorithm was first developed and evaluated using 
high-light, tropical/subtropical and summer temperate field data [Carder et al., 1999] and later expanded to 
include parameters appropriate for low-light, polar data [Carder et al., 2004].  

9.2 Algorithm Description 
9.2.1 Remote-sensing reflectance model 

By making several approximations, the Rrs(λ) used in Carder_MODIS algorithm is simplified to 
[Carder et al., 1999] 

( ) ( )
( )λ
λλ

a
bconstantR b

rs ≈  ,    (9.1) 

where the "constant" is unchanging with respect to wavelength and solar zenith angle. The value of the 
constant is not relevant to the algorithm since, as will be shown later, the algorithm (for absorption and 
chlorophyll-a concentration) uses spectral ratios of Rrs(λ) and the constant term factors out. 

Further, both bb(λ) and a(λ) are partitioned into several separate terms. Each term is described empirically 
and is written in a general fashion as a function of variables and empirically derived parameters. Since sea 
surface temperatures were not provided in the IOCCG data sets, the unpackaged parameters regarding a*

ph(λ) 
derived from high-light, tropical/subtropical and summer temperate waters were employed [Carder et al., 
1999] (see Table 9.1). While a*

ph(λ) is extremely important for deriving chlorophyll-a concentrations 
accurately, retrievals of aph(λ) and adg(λ) are less sensitive to differences in a*

ph(λ).   
 
9.2.2 Backscattering coefficients 

The total backscattering coefficient, bb(λ), can be expanded as 
( ) ( ) ( )λλλ bpbwb bbb += ,     (9.2) 

with, bbp(λ) modeled as [Carder et al., 1999] 

( )
Y

bp Xb ⎟
⎠
⎞

⎜
⎝
⎛=

λ
λ 551 .     (9.3) 

bbw(λ) is constant [Morel, 1974]. X is the particulate backscattering at 551nm, and Y describes the spectral 
shape of the particle backscattering spectrum. Values for X and Y were determined empirically by model 
inversion [Carder et al., 1999] and are described as  

( )55110 rsRXXX += ,     (9.4) 
( )
( )488
443

10
rs

rs

R
RYYY += ,     (9.5) 

where X0,1 and Y0,1 are empirically derived constants [Carder et al., 1999] and are provided in Table 9.1.  
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When absorption due to water molecules does not dominate the total absorption coefficient at 551 
nm, algorithms that utilize wavelengths longer than 551 nm that take advantage of the larger inflection in 
the pure water absorption spectra between 570-610 nm [Pope and Fry, 1997] are required. Using 
measurements of Rrs(λ) and bbp(λ) collected from the West Florida Shelf (WFS), the equation 

( ) ( )( ) ( )( )( ) 000966.010551 667log029.1551log134.0933.0 −= +− rsrs RR
bpb ,  (9.6) 

(n = 154, R2 = 0.96, RMSE = 0.160) was derived for MODIS-like wavelengths. This function was used 
when Carder_MODIS algorithm was applied to the IOCCG synthetic data set. Since remote-sensing data 
with wavelengths longer than 555 nm were not available for the IOCCG in situ data set, however, 
bbp(551) values were then estimated using Eq. 9.4.    
 
9.2.3 Absorption coefficients 

The total absorption coefficient, a(λ), can be expanded as 
)()()()( w λλλλ dgph aaaa ++= ,    (9.7) 

with value of aw(λ) taken from Pope and Fry [1997].   
The shape of the aph(λ) spectrum for a given water mass changes due to the pigment-package effect 

and changes in pigment composition. For the MODIS wavebands centered at 412, 443, 488, and 551 nm, 
a hyperbolic tangent function was chosen to empirically model the ratio of aph(λ)/aph(675) in order to 
ensure that this ratio approaches an asymptote at very high or very low values of aph(675) [Carder et al., 
1999], 

( )( )( )( ) (675)(a/675ln)(atanh)(aexp)(a)( 3210 phphph aaa )λλλλλ = ,  (9.8) 
with values of a0-3(λ) provided in Table 9.1.  

The cumulative effects of detritus and gelbstoff absorption, adg(λ), are expressed as 
))400(exp()400()( −−= λλ Saa dgdg ,    (9.9) 

where S is the spectral slope, and a value of 0.0225 nm-1 provided optimal retrieval results for the 
Carder_MODIS algorithm to calculate chlorophyll-a concentrations [Carder et al., 1999]. It is larger than 
the mean ocean value of about 0.015 nm-1, likely compensating in part for uncertainties in other parts of 
the model. 

 

9.2.4 Model inversion 
Via Eqs. 9.1 - 9.9, Rrs(λ) is reduced to a function of three unknowns ("constant" term, aph(675), and 

adg(400)) along with model constants for X0,1, Y0,1, a0-3(λ), and S (Table 9.1). To algebraically solve for the 
values of the two desired unknowns (aph(675) and adg(400)), spectral ratios of 412:443 and 443:551 for 
Rrs(λ) as shown 

( )
( )

( )
( )

( )
( )412
443
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412
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412

a
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b
b

R
R

b

b
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rs = ,      
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( )
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( )

( )
( ) ,
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551
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a
a

b
b

R
R

b

b

rs

rs =         (9.10) 

provided the best separation of the two absorption contributions. Details on the computational method of 
solving these equations are discussed in Carder et al. [1999].  
 
9.2.5 Empirical portion of Carder_MODIS 

For waters with high concentrations of gelbstoff and chlorophyll, Rrs(412) and Rrs(443) values are 
small, and therefore the above semi-analytical approach cannot perform properly due to low signal-to-
noise ratios. Thus the semi-analytic approach is designed to return values only when modeled aph(675) 
values are less than 0.025 m-1, which is equivalent to a chlorophyll concentration of about 1.5 mg/m3. 
Otherwise, the following empirical algorithms derived from the West Florida Shelf (1999-2001) and 
Bayboro Harbor (St. Petersburg, Fla.) field data (n = 319) are used.  
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For aph(443), there is  
( ) ( )2

4545
2

3535 502.19708.1566.12095.1164.110443 ρρρρ +−−−−=emppha ,   (9.11) 
where ρij is the log-transformed ratio of Rrs(λi) to Rrs(λj) and the subscripts i and j are wavebands #1-6 that 
represent MODIS wavebands 412, 443, 488, 531, 551, and 667 nm, respectively. Since this equation 
requires the MODIS Rrs(531) waveband and the SeaWiFS waveband Rrs(510) was provided instead with 
the IOCCG in situ data, a modified SeaWiFS algorithm was also developed 

( ) ( )2
4545

2
3535 592.7775.0151.2133.1189.110443 SS

emppha ρρρρ +−−−−= ,   (9.12) 
and applied to the IOCCG in situ data set. Here ρ45S is equal to log(Rrs(510)/Rrs(555)).   

The empirical algorithm for adg(443) is 
( ) ( )2

2525
2

1515 451.2644.0386.1738.0144.110443 ρρρρ +−−−−=empdga ,       (9.13) 
and was applied to the IOCCG in situ data set. Since adding a ρ65 term reduced the RMSE error by 40% 
for calculating adg(443) for the WFS and Bayboro Harbor data, the derived equation 

( ) ( )653525 234.1081.1185.0043.010443 ρρρ +−−=empdga ,   (9.14) 
was applied to the synthetic data set where Rrs(670) data (considered equal to Rrs(667)) were available. 

Empirical retrievals of a(λ) at 412, 443, and 488 nm also improved for the WFS and Bayboro Harbor 
data set when a red reflectance waveband was included. Thus, the empirical expression derived from field 
data and applied to the synthetic data set takes the form 

( ) ( )( ) ( )( ) (( ))( )667log)(488log)(443log)()( 321010 rsrsrs RcRcRcc
empa λλλλλ +++= , (9.15) 

where c0-3(λ) are empirically derived parameters (Table 9.2a). Note that while reflectance ratios are used 
to calculate aph(443)emp and adg(443)emp, reflectance values are used to calculate a(λ)emp in Eq. 9.15. For 
the IOCCG in situ data set that does not have a red reflectance waveband, an empirical expression similar 
to that of Lee et al. [1998b] 

( ) ( )2
354353

2
2522510 )()()()()(10 ρλρλρλρλλλ ttttt

empa ++++= ,   (9.16) 
was developed with t0-4(λ) (Table 9.2b) also derived from the WFS and Bayboro Harbor data.  
 
9.2.6 Blending semi-analytic and empirical IOP values 

In order to provide a smooth transition in modeled IOP values when the algorithm switches from the 
semi-analytical to the empirical method, a weighted average of the modeled values returned by both 
algorithms is used near the transition border [Carder et al., 1999]. When the semi-analytical portion 
returns an aph(675) value between 0.015 and 0.025 m-1, IOP values are calculated as 

( ) ( )( )empsa IOPwIOPwIOP −+= 1 ,    (9.17) 
where (IOP)sa is the semi-analytically-derived value, (IOP)emp is the empirically derived value, and w is 
the weighting factor equal to [0.025-aph(675)]/0.010. Semi-analytical and empirical IOP values are used 
when modeled aph(675) values are less than 0.015 m-1 and greater than 0.025 m-1,  
respectively. Note that this transition range can vary with pigment packaging (e.g., see Carder et al. 
[2004]).  
 

9.3 Algorithm Performance with the IOCCG Data Sets 
The Carder_MODIS algorithm requires Rrs(λ) data at a minimum of five wavebands: 412, 443, 488, 

531 and 551 nm. Further inclusion of the Rrs(667) improves retrievals of adg(443)emp (Eq. 9.14) and 
a(λ)emp (Eq. 9.15) values. Since the synthetic Rrs(λ) data was generated in 10 nm increments from 400-
800 nm, reflectance values at 410, 440, 490, 530, 550 and 670 nm were considered similar enough to the 
MODIS wavebands and were input into the algorithm. For the IOCCG in situ data set only Rrs(λ) data at 
412, 443, 490, 510, and 555 nm were input into the equations.   
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9.3.1 Synthetic data set 

 Using the Carder_MODIS algorithm, the inherent optical properties a(410), a(440), a(490), aph(440), 
adg(440) and bbp(550) were derived from the synthetic Rrs(λ) data (Figure 9.1). Statistical analyses were 
performed on log-transformed data and include the slope, intercept, correlation of determination (R2) and 
the root-mean-square error (RMSE) (Table 9.3a). 

Particulate backscattering coefficients at 550 nm retrieved using Eq. 9.6 from Rrs(550) and Rrs(670) 
are very accurate (RMSE = 4.2%). Total absorption coefficients at 410, 440 and 490 nm were also 
retrieved accurately for the synthetic data set with RMSE errors equal to 7.1, 5.9 and 6.5%, respectively. 
RMSE values for aph(440) (14.1%) and adg(440) (13.5%) are slightly more than double the error 
calculated for a(440) since phytoplankton and detritus/gelbstoff exhibit overlapping absorption spectra 
making it difficult to separate them. 

 
9.3.2 In situ data set 

The results of the Carder_MODIS algorithm when applied to the IOCCG in situ data set were not as 
good as the results observed for the synthetic data set because errors in field Rrs and IOP data, not present 
in the synthetic data, are significant in the in situ data.   

Total absorption coefficients at 412, 443, and 488 nm derived from the in situ Rrs(λ) yielded RMSE 
errors of 19.7, 20.5 and 20.6%, respectively (Figure 9.2, Table 9.3b).  Errors for aph(443) and adg(443) 
were only slightly higher than a(443) and were 19.5% and 27.9%, respectively. While the semi-analytic 
aph(443) values derived from synthetic Rrs(λ) data were overestimated, values derived from the in situ 
Rrs(λ) data were more centered about the one-to-one line. This may indicate that perhaps the underlying 
aph(λ) functions used to generate the synthetic data for oligotrophic waters are not quite representative of 
the distribution of the naturally occurring aph(λ) data, or at least Eq. 9.8 is more consistent with the aph(λ) 
functionality of the in situ data set than with that of the synthetic data set.   

Large errors that occur in empirically derived a(412), a(443), and aph(443) values and appear as linear 
horizontal rows of data in Figure 9.2 at ~0.23, 0.15, and 0.07 m-1, respectively, can be traced to a single 
investigator for a large multi-year, coastal data set. Removal of these points would improve the 
performance of the empirical portion of our algorithm. Furthermore, empirical retrievals of a(λ) and 
adg(440) may also be improved for this data set if Rrs(λ) data were available for wavelengths longer than 
555 nm. 

9.4 Conclusions 
The Carder_MODIS algorithm [Carder et al., 1999] calculated bbp(550) and a(λ) values very 

accurately for the synthetic data set. Values for aph(443) and adg(443) were calculated less accurately 
because phytoplankton and detritus/gelbstoff exhibit overlapping absorption making it more difficult to 
separate them using Rrs(λ). Retrieval errors tripled for a(λ) and doubled for adg(443) when the algorithm 
was applied to the in situ data set as compared to the synthetic data set. The fact that the partitioned 
values fell within the same error range as the total-absorption values suggests that much of the error 
imputed to the algorithms for the in situ data set may be attributable to errors or inconsistencies among 
the measured data sets, whereas the synthetic data set had no measurement noise. 

IOP retrieval errors calculated for the in situ data set may improve if Rrs(667) data were available. 
Significant error reductions were observed for empirically derived backscattering and total absorption 
coefficients when red reflectance data were used for our high-absorption Florida data set and for the 
synthetic data set. Note, however, that while Rrs(667) can be used for “perfect” synthetic data, accurate 
measurements of Rrs(667) from space are much more subject to error due to smaller signal-to-noise ratios. 
A waveband near 610-620 nm would perhaps be a better compromise than use of 667 nm for satellites. 
The Medium Resolution Imaging Spectrometer (MERIS) has such a waveband around 620 nm.  
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Finally, the expansion of available global data sets in the past 10 years and the broad range of data 
synthesized in the numerical data set have provided examples of how various older algorithms may be 
improved, and we are grateful for being included in this challenging algorithm inter-comparison. 

 

 

Table 9.1.  Parameters for the MODIS semi-analytical algorithm for regions without packaged 
pigments. 

λ a0 a1 a2 a3 X0 X1 Y0 Y1 S (nm-1)
412 2.20 0.75 
443 3.59 0.80 
488 2.27 0.59 
551 0.42 -0.22 

-0.5 0.0112 -0.00182 2.058 -1.13 2.57 0.0225 

 
 

Table 9.2a. Wavelength-dependent parameters for the high-absorption empirical a(λ) 
algorithm (Eq. 9.15) that requires Rrs(670). 

 c0(λ) c1(λ) c2(λ) c3(λ) 
a(412) -0.349 -1.041 0.171 0.754 
a(443) -0.166 0.068 -1.284 1.077 
a(488) -0.167 0.478 -1.639 1.075 

 
 
 

Table 9.2b. Wavelength-dependent parameters for the high-absorption empirical 
a(λ) algorithm (Eq. 9.16) that does not require Rrs(670). 

 t0(λ) t1(λ) t2(λ) t3(λ) t4(λ) 
a(412) -0.640 -0.718 -0.650 -1.365 2.369 
a(443) -0.837 -0.860 -0.791 -1.162 2.855 
a(488) -0.947 -0.343 -0.721 -1.633 2.741 
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Table 9.3a. RMSE and regression (Type II) results of the synthetic data set (θ0 = 30°). Rrs(λ) 
values at 410, 440, 490, 530, 550 and 670 nm were used as inputs. N is the number of data 
tested, while n is the number of valid retrieval. 

 N n intercept slope R2 RMSE bias 
a(410) 500 500 0.015 0.990 0.990 0.071 0.020 
a(440) 500 500 0.030 1.030 0.993 0.059 0.010 
a(490) 500 500 0.079 1.082 0.993 0.065 0.008 

bbp(550) 500 500 -0.012 0.998 0.995 0.042 -0.008 
aph(440) 500 500 -0.046 0.908 0.963 0.141 0.071 
adg(440) 500 500 0.084 1.098 0.978 0.135 -0.004 

 
Table 9.3b: RMSE and regression (Type II) results of the in situ data set. Rrs(λ) values at 412, 
443, 490, 510 and 555 were used as inputs. N is the number of data tested, while n is the 
number of valid retrieval. 

 N n intercept slope R2 RMSE bias 
a(412) 656 656 0.098 1.066 0.826 0.197 0.039 
a(443) 656 656 0.030 1.111 0.831 0.205 -0.078 
a(488) 656 656 0.131 1.173 0.789 0.206 -0.063 

aph(443) 656 656 -0.052 0.986 0.827 0.195 -0.032 
adg(443) 656 656 -0.041 1.082 0.771 0.279 -0.144 
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Figure 9.1. Relationships between known and retrieved IOPs using the Carder_MODIS algorithm 
(synthetic data set), with Rrs(λ) at 410, 440, 490, 530, 550 and 670 nm used as inputs. Symbols: semi-
analytic (ο) and empirical (∆). 



 

 
Figure 9.2. Relationships between measured and retrieved IOPs using the Carder_MODIS 
algorithm (in situ data set), with Rrs(λ) at 412, 443, 490, 510 and 555 nm used as inputs. Symbols: 
semi-analytic (ο) and empirical (∆). 
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Chapter 10. The Quasi-Analytical Algorithm  
ZhongPing Lee, Kendall L. Carder, Robert Arnone 
 

10.1 General Description  
The Quasi-Analytical Algorithm (QAA) was developed by Lee et al. [2002] to derive inherent optical 

properties of optically deep waters. QAA separates the inversion process into two consecutive sections. 
The first section is the derivation of coefficients of total absorption and backscattering. In this section, 
there is no involvement of spectral models for the absorption coefficient of phytoplankton pigments and 
gelbstoff. The second section, which utilizes the derived total absorption coefficient from the first section, 
decomposes the total absorption coefficient into its major components.  

10.2 Derive Total Absorption and Backscattering Coefficients 
In this part, QAA follows the generally accepted relationship between remote-sensing reflectance and 

bb/(a+bb), and the fact that water absorption coefficients dominate most of the longer wavelengths. Here 
bb is the total backscattering coefficient and a is the total absorption coefficient. QAA starts with the 
calculation of a at a reference wavelength (λ0, 555 or 640 nm), with the assumption that remote-sensing 
reflectance at this wavelength is well measured from a remote-sensing platform.  

The total absorption coefficient at λ0 is expressed as 
)()()( 000 λλλ aaa w ∆+= .     (10.1) 

aw(λ0) is the contribution from water molecules [Pope and Fry, 1997], while ∆a(λ0) represents the 
contribution from dissolved and suspended constituents. For this a(λ0), as long as aw(λ0) makes a big 
portion (at least one third), errors in its estimation are limited.  

Lee et al. [2002] proposed two λ0 for dealing with IOP inversion: 555 nm for oceanic and most 
coastal waters and 640 nm for waters with high absorption coefficients (a(440) > ~0.5 m-1). For each λ0, 
there could be many ways to estimate a(λ0). In the exercise reported here, when 555 nm is selected as λ0, 
a(555) is estimated using the Morel-Maritorena approach [Morel and Maritorena, 2001] as described in 
Chapter 4. In essence, a(555) is estimated with the value of max(Rrs(440,490,510))/Rrs(555). When 640 
nm is selected as λ0, a(640) is estimated as in Lee et al. [2002], i.e., 

1.1

)440(
)640(07.031.0)640( ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+=

rs

rs

r
ra ,    (10.2) 

where rrs is the subsurface remote-sensing reflectance corresponding to the Rrs measured above the 
surface. 

To estimate a(640) requires measurements of remote-sensing reflectance at 640 nm, a band which 
does not exist in many satellite sensors (such as SeaWiFS). To overcome this limitation, Rrs(640) is 
simulated with measurements made at 490, 555 and 670 nm, as described in Lee et al. [2005b], 

 )490(/)670(0005.0)670(4.1)555(01.0)640( rsrsrsrsrs RRRRR −+= .     (10.3) 
Note that in Lee et al. [2005b] it is Rrs(667) for SeaWiFS spectral bands. This empirical formulae was 
aimed to more or less correct the chlorophyll-a fluorescence contained in Rrs(670). 

rrs(λ) is calculated from Rrs(λ) through  
rrs(λ) = Rrs(λ)/(0.52  + 1.7 Rrs(λ)),   (10.4) 

where 0.52 and 1.7 are empirical values derived from data simulated by Hydrolight [Lee et al., 1999]. 
Because rrs(λ) can be modeled as a polynomial function of bb/(a+bb) [Gordon et al., 1988; Lee et al., 
1998a], bb/(a+bb) (represented as symbol u) at λ can be calculated algebraically from rrs(λ) [Hoge and 
Lyon, 1996; Lee et al., 2002],  
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The spectral bb(λ) is modeled with the widely used expression [Gordon and Morel, 1983; Smith and 
Baker, 1981], 
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λλλλ 0

0)()()( ,    (10.6) 

where bbw and bbp are the backscattering coefficients of pure seawater and suspended particles, 
respectively. Values of bbw(λ) are provided in Morel [1974].  

When a(λ0), u(λ0), and bbw(λ0) are known, bbp(λ0) in Eq. 10.6 can be easily derived. The values of 
bb(λ) at other wavelengths are then calculated when the wavelength exponent (Y) is estimated from [Lee 
et al., 2002] 
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Finally, applying bb(λ) back to u(λ) (derived from rrs(λ), Eq. 10.5), the total absorption coefficient at 
wavelength λ, a(λ), is calculated algebraically,  
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To obtain smooth satellite IOP products where both 555 nm and 640 nm could be used as reference 
wavelength, the final a(λ) product is a combination of the absorption coefficients derived using 555 nm as 
reference wavelength ( ) and 640 nm as reference wavelength ( ] ), in such a fashion ]555[)(λa 640[)(λa
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Further, final bbp(λ) is recalculated using u(λ) and a(λ) based on Eqs. 10.5 and 10.6.  
 

10.3 Decompose the Total Absorption Coefficient 
Decomposition of a(λ) used the a(410) and a(440) values derived from the above steps. In the process, 

two more parameters are estimated first. One is the spectral ratio of aph(410)/aph(440) (represented by 
symbol ζ), while the other is the spectral ratio of adg(410)/adg(440) (represented by symbol ξ). The value 
of ζ  is estimated using the spectral ratio of rrs(440)/rrs(555) based on the field data [Lee et al., 1998b]: 
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The value of ξ  is calculated after the spectral slope S (used to describe the spectral shape of adg(λ)) is 
selected (0.015 nm-1 is used in this exercise):  

ξ = adg(410)/adg(440) = exp(S (440-410)).    (10.11) 
When the values of a(410), a(440), ζ  and ξ  are known, aph(440) and adg(440) are calculated 

algebraically,  
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10.4 Results and Discussion 
The above steps to retrieve IOPs from Rrs(λ) are applied to the IOCCG data sets. For the synthetic 

data set, Rrs values at 410, 440, 490, 510, 555, and 670 nm were used as indicated (Rrs(555) is a simple 
average of Rrs(550) and Rrs(560)). For the in situ data set, however, only Rrs values at the first five 
wavelengths were used as Rrs(670) is not available. The retrieved IOPs include a(λ), bbp(λ), aph(λ), and 
adg(λ) of those wavelengths. To provide a general idea of the algorithm performance, some retrieved 
properties were compared with known values, with analysis results presented in Tables 10.1 and 10.2 and 
the figures followed. Performance (not presented) for the synthetic data with the Sun at 60o from zenith is 
similar as that with the Sun at 30o.  

For the synthetic data set, QAA retrieved total absorption and backscattering coefficients accurately 
(slope and R2 values are near 1.0 and RMSE values are 5-6%) for the entire data range. The performance 
of the QAA to the in situ data set is not as good as that to synthetic data (see Fig. 10.2 and Table 10.2). 
This is not surprising since there are unavoidable errors and uncertainties (see Chapter 3) in the 
measurement of both Rrs(λ) and IOPs. Also, natural water environment is far more complex than the ones 
simulated with computer code. Nevertheless, for such a inclusive data set, the RMSE values for a(λ) are 
~17%. 

For both synthetic and in situ data sets, the retrieval of adg(λ) is only slightly worse than the retrieval 
of total absorption coefficients, but more errors are found in the derived aph(λ) (see Tables 10.1 and 10.2 
and Figures 10.1 and 10.2). This is, in part, because gelbstoff (including detritus) likely contributes more 
to total absorption coefficient at 410 and/or 440 nm. Also, in the explicit decomposition of total a(λ) to 
aph(λ) and adg(λ), values of ζ  and ξ  are not exactly known but have to be estimated. Errors in these 
estimations will be propagated to the derived values of adg(440) and aph(440). Note that value of ξ 
(directly related to the spectral slope of adg(λ)), as observed in the field and represented in the synthetic 
data set, may vary widely based on the nature of waters under study, such as humic versus fulvic acids 
[Carder et al., 1989], and abundance of detritus [Roesler et al., 1989], etc. Also, the present version of 
QAA uses only one spectral constraint regarding aph(λ) (ratio of aph(410)/aph(440)) in the decomposition 
of a(λ). Due to errors in Rrs(λ) measurements as well as errors in selection of parameter S, negative 
aph(440) or aph(490) (4.2% in synthetic data and 4.0% in in situ data) appeared. Such retrievals were then 
flagged and removed in the statistical analyses. This kind of obvious errors can be remedied by adding 
more spectral constraints (e.g., the spectral models of a*

ph(λ) used in other algorithms) in the derivation of 
aph(λ) (model uncertainties will be introduced, however), or replaced with empirical estimates [Lee et al., 
1998b]. 

When Rrs(640) was not used in the derivation process (i.e. 555 nm alone as reference wavelength), the 
performance of QAA to the synthetic data set was slightly degraded. For instance, the slope and R2 values 
for a(440) changed from 1.003 and 0.994 to 0.891 and 0.978, respectively, and RMSE changed from 
0.056 to 0.119. The slope and R2 values for adg(440) (aph(440)) became 0.892 and 0.969 (0.911 and 0.919, 
n = 477), respectively. As pointed out in Lee et al. [2002], the degradation happened to waters with large 
a(440) (and then a(555)) values (mostly turbid coastal waters) where aw(555) makes less than 1/3 of the 
total absorption coefficient. For such cases, there will be bigger errors in the estimated a(555) and then in 
other IOPs. If it is limited to waters with a(440) less than 0.5 m-1 (where aw(555) makes at least ~1/3 of 
a(555)), however, the performance of QAA with 555 nm as λ0 is significantly better. The slope and R2 
values are close to unity (n = 334) and RMSE values are 4-5% for both total absorption and 
backscattering coefficients; and the RMSE are 8.4% and 14.6 % for adg(440) and aph(440), respectively. 
These results demonstrate the importance to have a red band (in the vicinity of 620 – 640 nm) for remote 
sensing of coastal waters and the applicability of QAA to satellite data, especially for oceanic waters. 

10.5 Conclusions 
The QAA is an algorithm based on the fundamental relationships of ocean optics, and generally 

follows the inversion concept described in Chapter 1. Apply QAA to the IOCCG data sets (both synthetic 
and in situ), the retrieved IOPs matched known or measured IOPs very well (in particular, absorption 
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coefficient of CDOM and the total and particle backscattering coefficient). As many other inversion 
algorithms, QAA is mathematically simple and physically transparent. These characteristics make the 
algorithm easily adaptable to different multi-spectral or hyperspectral sensors, and computational easy for 
processing satellite imageries. 

 
 
Table 10.1: RMSE and regression (Type II) results of the synthetic data set (θ0 = 30°). IOPs were 
retrieved with Rrs values at 410, 440, 490, 510, 555 and 670 nm. N is the number of data tested, while 
n is the number of valid retrieval. 

 N n intercept slope R2 RMSE bias 
a(410) 500 500 0.022 0.999 0.994 0.057 0.023 
a(440) 500 500 0.024 1.003 0.994 0.056 0.022 
a(490) 500 500 -0.001 0.998 0.991 0.053 0.001 
bbp(440) 500 500 -0.039 0.973 0.988 0.064 0.013 
bbp(555) 500 500 -0.006 1.010 0.991 0.063 -0.026 
adg(410) 500 479 0.014 0.985 0.992 0.072 0.025 
adg(440) 500 479 -0.003 0.984 0.986 0.088 0.012 
aph(440) 500 479 0.099 1.051 0.928 0.168 0.033 
aph(490) 500 479 0.126 1.099 0.770 0.316 -0.021 

 
Table 10.2: RMSE and regression (Type II) results of the in situ data set. IOPs were retrieved with Rrs 
values at 412, 443, 490, 510 and 555 nm. N is the number of data tested, while n is the number of 
valid retrieval. 

 N n intercept slope R2 RMSE bias 
a(412) 656 656 -0.089 0.963 0.868 0.168 -0.055 
a(443) 656 656 -0.081 0.969 0.840 0.175 -0.051 
a(490) 656 656 0.001 1.020 0.792 0.174 -0.021 
adg(412) 656 630 -0.092 0.986 0.820 0.209 -0.077 
adg(443) 656 630 -0.087 0.989 0.794 0.221 -0.072 
aph(443) 656 630 0.033 1.067 0.593 0.321 -0.062 
aph(490) 656 630 0.498 1.310 0.686 0.334 -0.007 
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Figure 10.1. Comparison between QAA-derived IOPs and known IOPs, for the synthetic data set. IOPs were derived 
with Rrs values at 410, 440, 490, 510, 555 and 670 nm as inputs (see text for details).  
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Figure 10.2. Comparison between QAA-derived IOPs and known IOPs, for the in situ data set. IOPs were 
retrieved with Rrs values at 412, 443, 490, 510 and 555 nm as inputs. 
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Chapter 11. The GSM Semi-Analytical Bio-Optical Model 
Stéphane Maritorena and Dave Siegel 

11.1 General Description 

The GSM (for Garver-Siegel-Maritorena) semi-analytical ocean color model was initially developed 
by Garver and Siegel [1997] and later updated by Maritorena et al. [2002]. The GSM model is based on 
the quadratic relationship between the remote-sensing reflectance (Rrs) and the absorption and 
backscattering coefficients from Gordon et al. [1988], 
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where g1 (= 0.0949) and g2 (= 0.0794) are geometrical factors. The absorption coefficient (a(λ)) is 
decomposed into seawater absorption, aw(λ), phytoplankton absorption, aph(λ), and the combined 
absorption of colored detrital and dissolved material (CDM), adg(λ) (considered together as a single term 
because of their similar spectral shapes [Carder et al., 1991; Nelson and Siegel, 2002; Nelson et al., 
1998]). The backscattering coefficient (bb(λ)) is partitioned into terms due to seawater, bbw(λ), and 
suspended particulates, bbp(λ). The non-water absorption and scattering terms are parameterized as a 
known shape with an unknown magnitude, 
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where a*
ph(λ) is the chlorophyll-a specific absorption coefficient, S is the spectral decay constant for 

CDM absorption [Bricaud et al., 1981], Y  is the power law exponent for particulate backscattering 
coefficient, and λ0 is a scaling wavelength (443 nm). For aph(λ), adg(λ), and bbp(λ), the unknown 
magnitudes are the chlorophyll a concentration (Chl), the detritus/gelbstoff absorption coefficient 
(adg(443)), and the particulate backscatter coefficient (bbp(443)), respectively. In application of Eqs. 11.1 – 
11.4, aw(λ), bbw(λ), nw, t, and gi are taken from the literature whereas the values of Y, S, and a*

ph(λ) were 
determined by “tuning” the model against a large in situ data set [Maritorena et al., 2002] (provided in 
Table 11.1). The unknowns in Eqs. 11.1 – 11.4, Chl, bbp(443), and adg(443), are retrieved by applying a 
nonlinear least-square technique to fit Eq. 11.1 Rrs(λ) data (or normalized water-leaving radiance) 
collected at four or more wavelengths. Confidence intervals for the retrieved variables are also generated 
during the inversion (See Maritorena & Siegel [2005] and Chapter 3). 

The results presented below were obtained using the set of model parameters described in Maritorena 
et al. [2002]. In this version, model parameters were optimized using an in situ data set that consisted 
mostly of offshore oceanic Case 1 waters with very few stations from eutrophic waters. In order to 
streamline the tuning process and to limit the number of unknowns to retrieve, the parameterization of the 
original GSM model includes some simplifying assumptions. In particular, several parameters are held 
constant in the model while they actually vary in nature. For example, a*

ph(λ) is expressed as a constant 
mean spectrum while a more sophisticated function could account for photoadaptation or community 
structure shifts (e.g., Bricaud et al. [1998]). Similarly, particulate backscattering is modeled using a 
simple function with a fixed spectral dependence (through exponent Y  in Eq. 11.4) while such 
wavelength dependence tends to disappear in turbid waters. The slope of the spectral decrease in adg 
absorption, S, is also held constant in the model whereas it actually depends on a complex system 
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involving land/sea interactions, the productivity and state of the phytoplankton communities, the 
microbial loop and photochemistry (see also discussion in Maritorena et al. [2002]). Since these 
parameters were optimized from a large global Case 1 in situ data set they are generally well suited for 
such conditions and for the original GSM retrievals (Chl, bbp(443), and adg(443)). However, in waters 
where optical characteristics differ strongly from those used to tune the model, coastal Case 2 or 
phytoplankton rich waters in particular, the model performance can be significantly degraded. Although 
not presented here, other tuned versions of the model have been developed that are more appropriate for 
specific situations (e.g., Santa Barbara channel coastal waters). 

GSM model was initially designed for use with the SeaWiFS data and chlorophyll concentration is 
one of its three originally retrieved variables [Maritorena et al., 2002]. For consistency with some of the 
other models presented here, additional calculations were implemented in order to also generate total and 
phytoplankton absorption coefficients at 440 nm (considered negligible difference from that at 443 nm). 
The total absorption coefficient was calculated by solving Eq. 11.1 for a(440) using the input Rrs(440) 
values and the retrieved bbp(440). The phytoplankton absorption coefficient was then calculated by 
subtracting aw(440) and the retrieved adg(440) value from a(440). The original GSM retrieved variables 
have to satisfy the following criteria to be considered valid: 

0 < Chl < 100.0 mg/m3, 
0 < adg(443) < 2.0 m-1, 
and, 0.0001 < bbp(443) < 0.1 m-1. 

 

11.2 Results 
Taken the Rrs values at 410, 440, 490, 510, and 555 nm, the variables obtained by inversion of the 

model were compared to the known or in situ data using simple regression analyses. Type II regressions 
on log-transformed data were performed for each of the retrieved variables. The statistical parameters 
presented in Table 11.2 include: the slope and intercept of the regression, R2, RMSE error, bias and the 
number of valid retrievals. 

Results of the inversion using the synthetic data set are presented in Figure 11.1. Overall, the 
retrievals for the four variables presented show good statistical results with small negative biases and high 
R2 values. Slopes are greater than 1.0 for all variables and retrievals tend to slightly underestimate 
synthetic values at the low end and slightly overestimate at the high end. In general, dispersion tends to 
increase when absorption or backscattering reaches high values because as explained above this version 
of the model is not ideal in such conditions. Also, no valid retrievals were achieved for a small portion 
(about 4%) of both synthetic and in situ data sets. 

Figure 11.2 presents the GSM retrievals when applied to the in situ data set. As expected, the 
statistical results are slightly degraded. The dispersion is higher than with the synthetic data and R2 values 
are lower. This is likely a consequence of the noise and uncertainties associated with in situ AOP and IOP 
measurements. The slopes show the same trends as with the synthetic data but are slightly higher. In 
general, the GSM retrievals tend to be slightly lower than the in situ data. 

11.3 Conclusions 
The GSM model is a simple semi-analytical ocean color model originally designed for use with 

SeaWiFS and MODIS-like satellite data over non-coastal waters. While both the synthetic and in situ data 
sets used here have a strong “coastal” component, the model performed well but as expected, its 
performance was lower in highly absorbing or backscattering situations. Other versions of the model exist 
or are being developed for specific coastal waters or to implement new features (e.g., band-independent or 
“Trichodesmium” versions [Westberry et al., 2005]).  
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Table 11.1. Parameters for GSM Rrs(λ) inversion. 

 a*
ph(λ) [m2/mg] S [nm-1] Y 

412 0.00665 
443 0.05582 
490 0.02055 
510 0.01910 
555 0.01015 

0.0206 1.0337 

 
 
Table 11.2a: RMSE and regression (Type II) results of the synthetic data set (θ0 = 30°). IOPs were 
retrieved with Rrs values at 410, 440, 490, 510 and 555 nm as inputs. N is the number of data tested, 
while n is the number of valid retrieval. 

 N n intercept slope R2 RMSE bias 
a(443) 500 479 0.032 1.068 0.974 0.115 -0.017 

adg(443) 500 479 0.036 1.053 0.965 0.145 -0.013 
aph(443) 500 479 0.162 1.171 0.957 0.173 -0.060 
bbp(443) 500 479 0.198 1.133 0.957 0.152 -0.062 

 
 

Table 11.2b: RMSE and regression (Type II) results of the in situ data set. IOPs were retrieved with 
Rrs values at 412, 443, 490, 510 and 555 nm as inputs. N is the number of data tested, while n is the 
number of valid retrieval. 

 N n intercept slope R2 RMSE bias 
a(443) 656 646 -0.034 1.097 0.838 0.223 -0.129 

adg(443) 656 646 0.003 1.084 0.798 0.246 -0.103 
aph(443) 656 646 0.029 1.175 0.737 0.350 -0.221 
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igure 11.1. Comparison of the modeled and known IOPs for the synthetic data set using the GSM model with Rrs(λ) 
 
F
at 410, 440, 490, 510 and 555 nm as inputs.  
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igure 11.2. Comparison of the modeled and in situ 
Ps using the GSM model with R (λ) at 412, 443, 
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Chapter 12. Inversion Based on a Semi-Analytical Reflectance Model 
Emmanuel Devred, Shubha Sathyendranath and Trevor Platt 
 

The algorithm presented here is based on the theoretical reflectance model developed by 
Sathyendranath and Platt [1997; 1998]. They used the assumption of quasi-single scattering to express the 
reflectance in the ocean as a function of the diffuse attenuation coefficient, Kd, which was in turn 
expressed as a function of IOPs. This model has since been implemented for remote sensing applications 
in the North West Atlantic [Devred et al., 2005a; Sathyendranath et al., 2001] and coastal waters off 
Vancouver Island [Sathyendranath et al., 2004]. Although the model was designed primarily for 
application in Case 1 waters, the mathematical formulation [Sathyendranath and Platt, 1997] accounts for 
multiple orders of scattering, and the computer programme used in the analysis presented here 
incorporates scattering events up to the fifth order. Thus the model is easily adapted to more turbid Case 2 
waters, such as coastal areas. Moreover, some assumptions made to develop the model (e.g., value of 1.0 
for the ratio of backscattering to upward-scattering coefficients) are likely to be satisfied in turbid waters 
when the angular distribution of radiance tends to isotropy. This model has been widely used for various 
applications ranging from chlorophyll concentration retrieval to primary production computations. Here it 
is coupled with a nonlinear, least-square fitting method to retrieve IOPs (absorption and backscattering 
coefficients) of marine components (phytoplankton and detrital material, dissolved and particulate) from 
remote-sensing reflectance, Rrs.  

12.1 Theoretical Background 
Sub-surface irradiance reflectance (R(0-,λ)) is expressed as the ratio of upwelling irradiance (Eu) to 

downwelling irradiance (Ed) just below the surface. Sathyendranath and Platt [1997] showed that R(0-,λ) 
for a homogeneous water column can be expressed as:  
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where Kd(λ) and κ(λ) are respectively the diffuse attenuation coefficients (m-1) for downwelling and 
upwelling irradiance (note that κ(λ) defines the rate of attenuation of upwelling light as it travels to the 
surface, and that this is different from the attenuation coefficient for upwelling light with increasing 
depth), µd is the average cosine for the downwelling irradiance, s is a shape factor defined as the ratio of 
upward scattering coefficient bu (m-1) to backscattering coefficient bb (m-1). The parameter s takes the 
value of 1.0 in very oligotrophic waters where the molecular scattering is dominant. The average cosine 
for downwelling irradiance (µd) just beneath the sea surface can be written as the sum of a direct and a 
diffuse component (Eq. 12.2). 

The cosine for the direct component is equal to cos(θs) where θs is the subsurface solar zenith angle 
and mean cosine for the diffuse component is 0.83 [Sathyendranath and Platt, 1988]. Thus, the mean 
cosine for the total downwelling irradiance at the sea surface is given by: 
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where I0, Id and Is correspond respectively to the total, direct and diffuse solar radiation at the sea surface 
[Gregg and Carder, 1990]. Further details regarding the assumptions and approximations in the ocean-
colour model used here are available in Sathyendranath and Platt [1997]. 

Sathyendranath and Platt [1988] have expressed the diffuse attenuation coefficient as (wavelength 
argument is omitted here for clarity), 
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and similarly, 
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where µu corresponds to the mean cosine for the upwelling light, which is approximated as 0.5. 
From Eqs. 12.1 – 12.4, the reflectance R can be expressed as a function of backscattering and 

absorption coefficients of the marine components at a given wavelength. This model has also been 
extended to deal with stratified waters and inelastic (Raman) scattering [Sathyendranath and Platt, 1998]. 
However, these features of the model are not exploited here to facilitate comparison with the other models 
in this report. The model has been used to provide a theoretical underpinning for empirical algorithms for 
retrieval of chlorophyll-a from ocean colour data [Sathyendranath et al., 2001], and to develop improved 
algorithms for chlorophyll-a retrieval for Case 1 waters of the North West Atlantic [Devred et al., 2005a]. 
Here, we examine the use of a nonlinear optimization technique to retrieve optical properties of the 
IOCCG data sets that include both Case 1 and Case 2 waters.  

12.2 The Approach 
To retrieve the inherent optical properties from remote-sensing reflectance, we applied a classical 

nonlinear least-square fitting method to Eq. 12.1. At a given wavelength, the reflectance at the sea surface 
is a function of five unknown parameters: R = f(aph,ag,ad,bb,ph,bb,p) where subscripts ph, y, d and p stand 
respectively for chlorophyll (phytoplankton), yellow substances (also referred to as CDOM), detritus and 
other particulate material, when the absorption and backscattering coefficients in the model are expressed 
as the sums of their components. Note that absorption (aw) and backscattering (bbw) by pure seawater can 
be computed at a given wavelength (see respectively Pope and Fry [1997] and Morel [1974]) and do not 
appear as unknown parameters in the above equation. Further, based on historical measurements and bio-
optical models [Bricaud et al., 1995; Bricaud et al., 2004; Bricaud et al., 1981; Ciotti et al., 2002; Devred 
et al., 2005b; Loisel and Morel, 1998; Ulloa et al., 1994], the spectral dependencies of those components 
are described as follows: 

[ ],)(exp)440()( 0λλλ −−= Saa dgdg    (12.5) 
for combined absorption coefficients of yellow substances (ag) and detritus (ad) at λ, where S, the 
exponential decrease of absorption with decreasing wavelength, is set to the average value of  0.014 nm-1; 
and 
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for particulate backscattering (organic and mineral). Note that the wavelength dependence model is also a 
function of chlorophyll concentration (Chl, mg/m3) as in Sathyendranath et al. [2001]. 

The model of Sathyendranath et al. [2001] was used to describe phytoplankton absorption, 
.)())exp(1)(()( *

2 ChlaChlfUa ph λλλ +−−=    (12.7) 

Values of U(λ), f and  are provided in Table 12.1, whereas details on interpretation of these 
parameters can be found in Devred et al. [2005b]. The three parameters of the model were determined by 
fitting the model to the data base at the Bedford Institute of Oceanography. 

)(*
2 λa

With the above prescriptions on the spectral dependencies of the optical properties of some of the 
components, and by combining the absorptions by detritus and yellow substances into a single component 
(Eq. 12.5), the number of unknown parameters in Eq. 12.1 is reduced to four (namely, aph(440), adg(440), 
bbp(440) and Chl). When remote-sensing reflectance at 410, 440, 490, 510, 555 and 670 nm are available 
from ocean colour sensors (for example, SeaWiFS, MODIS and MERIS, which are the most commonly-
used), we get a system of six equations with four unknowns. This facilitates the convergence on the 
solution for the four unknowns. Note that parameters bbp(λ) and aph(λ) are related to Chl through Eqs. 
12.6 – 12.7. However, aph(440) was determined independent of Chl in our algorithm. Chl was used only 
to the process of deriving aph and bbp at other wavelengths.  
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To apply our approach to the IOCCG data sets (both synthetic and in situ), the reflectance R was 
estimated from remote-sensing reflectance, Rrs, using: 

rs
w RQ
t

nR 2

2

= .     (12.8) 

Here nw
2/t2 (≈ 1.89) accounts for the air-sea interface effects, and Q converts radiance to irradiance. It is 

known that the factor Q varies with solar zenith angle, sea-surface roughness (wind-induced) and 
substances present in the water. Here, the dependence of Q on solar zenith angle was computed using the 
model of Åas and Højerselev [1999] and an empirical function [Devred et al., 2005a] was used to 
compute the dependence of Q on chlorophyll content [Morel and Gentili, 1993]. 

12.3 Results and Discussion 
We used remote-sensing reflectance at 410, 440, 490, 510, 555, and 670 nm (note that Rrs(670) is not 

available for the in situ data set) of the IOCCG data sets to derive total, phytoplankton, and detrital 
(dissolved and particulate) absorption coefficients, and particulate backscattering coefficient at 440 nm.  
 
12.3.1 Retrieval of IOPs from the simulated data set 

The interest in inverting synthesized data lies in the control of all environmental variables such as the 
sea surface state, solar zenith angle and optical properties. It is then possible to assess accurately the 
performance of the reflectance model and the fitting method to retrieve inherent optical properties.  

Figure 12.1 shows derived versus synthesized total, phytoplankton and detritus absorption 
coefficients and particulate backscattering at 440 nm for data with a solar zenith angle of 30°. The 
retrieved data are consistent with the simulated data. For each of the derived IOPs, the optimization 
method failed to retrieve the parameters in eight cases for absorption of phytoplankton, and yellow 
substances and detritus. Linear regression (Type II) on log-transformed data (omitting the cases where 
convergence was not obtained) gave slopes close to 1.0 (except for phytoplankton absorption with a slope 
of 1.16) with small negative bias for all variables (Table 12.2). Note that similar results were also 
achieved with the synthesized data of 60o solar zenith angle (not shown). This demonstrates that the 
assumptions made on the spectral dependence of the IOPs with average parameters are acceptable. 

Matching of phytoplankton absorption coefficients presents the poorest agreement (although still 
acceptable) with a slope of 1.156 and a bias of -0.053. It also exhibits the lowest correlation coefficient 
with a value of R2 = 0.827. One observes an increase of discrepancy in the retrieved data (Figure 12.1) as 
aph(440) increases. This is probably due to the phytoplankton absorption model used in our algorithm. It is 
noteworthy that the retrieved total absorption at 440 nm shows a better agreement than does the retrieved 
phytoplankton absorption. At low backscattering coefficients (bbp(440) < 0.002 m-1) our algorithm 
showed a systematic underestimation of the retrieved backscattering. It probably results from the 
formulation of the spectral dependence of the backscattering coefficients with respect to chlorophyll 
concentration. This approach may not be appropriate at low chlorophyll concentrations, and therefore for 
low backscattering coefficients. We will explore this problem further. 
 
12.3.2 Retrieval of IOPs from the in situ data set 

Inversion of in situ measurements becomes more challenging not only because the parameters defined 
in the previous section (IOPs, sun angle, vertical profile) show random and/or systematic variability in 
their natural environment, but also because external variables (for example, measurement errors) add 
perturbation to the entire system (defined here as the reflectance/IOP pairs). We can therefore expect a 
higher variability when retrieving the IOPs as confirmed in Figure 12.2. Only results for absorption 
coefficients are shown in Figure 12.2 because backscattering measurements were not available. 

The standard deviation has increased for all of the matching pairs (Table 12.3). Retrieved 
phytoplankton absorption coefficients show the highest discrepancy with the in situ data (slope of 1.537 
and bias of -0.110), perhaps because of the performance of the absorption model. Previous works 
[Burenkov et al., 2001; Devred et al., 2005a; Gohin et al., 2002; Reynolds et al., 2001; Sathyendranath et 
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al., 2001] showed that local bio-optical models should be preferred to global ones. This type of approach 
would likely decrease the discrepancy between the retrieved and in situ data. Comparison between 
retrieved and in situ absorption coefficients of yellow substances and detritus is also less consistent (slope 
of 1.312 and bias of -0.003) than the previous case (synthesized data set). In Figure 12.2, cases where the 
fitting procedure for adg(440) failed to converge are shown as filled triangles. These points were not 
retained in the statistical analysis (resulted smaller number of samples). The total absorption coefficients 
show a good agreement with a slope of 1.048 and a bias of -0.036. This is not inconsistent as 
phytoplankton absorption seemed to be slightly overestimated while yellow substances are 
underestimated. These effects cancelled each other, resulting in a better agreement when comparing the 
total absorption coefficients. 

12.4 Conclusion  
The reflectance model of Sathyendranath and Platt [1997], although based on the quasi-single 

scattering assumption, proved to be robust when applied to a great variety of optical marine 
environments, to cases ranging from low to high albedo (scattering to absorption coefficients ratio). 

Retrieval of inherent optical properties shows better accuracy when performed on the synthesized 
data set at low solar zenith angle. A small decrease in the accuracy was observed as solar zenith angle 
increased (not presented). A greater discrepancy occurred when retrieving phytoplankton absorption at 
440 nm than for other IOPs. This may be explained by the phytoplankton absorption model used in our 
algorithm. However, retrieval of the total absorption coefficient seems not affected by this feature. Our 
algorithm underestimated backscattering coefficients at small values, perhaps a limitation of our bio-
optical model adapted from Loisel and Morel [1998]. 

For the in situ data set, our algorithm yielded consistent results, although a greater variability around 
the 1:1 line was observed than that observed when inverting the synthesized data set. We showed that an 
underestimation (overestimation) of retrieved phytoplankton absorption lead to an overestimation 
(underestimation) of retrieved yellow substances absorption (not knowing which one is the cause). This 
will be further analysed to improve the performance of our algorithm. However, our algorithm yielded 
results comparable to other models reported here.  
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Table 12.1. Parameters for aph(λ) model. 
wavelength U(λ) a*

2(λ) (m2/mg) f 
412 0.0369 0.0243 
490 0.0338 0.0129 
510 0.0180 0.0114 
555 0.0036 0.0070 
670 0.0089 0.0172 

1.5815 

 
 

Table 12.2. RMSE and regression (Type II) results for the synthetic data set (Sun at 30o). IOPs were 
retrieved using Rrs values at 410, 440, 490, 510, 555 and 670 nm. N is the number of data tested, 
while n is the number of valid retrieval. 

 N n intercept slope R2 RMSE bias 
a(440) 500 500 -0.122 0.974 0.960 0.166 -0.104 

bbp(440) 500 500 -0.093 0.981 0.938 0.160 -0.056 
aph(440) 500 492 0.145 1.156 0.827 0.288 -0.053 
adg(440) 500 492 -0.119 1.090 0.873 0.348 -0.200 

 
 
 

Table 12.3. RMSE and regression (Type II) results for the in situ data set. IOPs were retrieved using 
Rrs values at 410, 440, 490, 510 and 555 nm. N is the number of data tested, while n is the number of 
valid retrieval.  

 N n intercept slope R2 RMSE bias 
a(443) 656 656 0.011 1.048 0.762 0.218 -0.036 

aph(443) 656 656 0.654 1.537 0.648 0.442 -0.110 
adg(443) 656 491 0.416 1.312 0.380 0.470 -0.003 
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Figure 12.1. Comparison between retrieved and simulated IOPs for a solar zenith angle of 30°. IOPs were retrieved 
using Rrs values at 410, 440, 490, 510, 555 and 670 nm. 
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Figure 12.2. Comparison between retrieved and in situ IOPs. IOPs were retrieved using Rrs values at 412, 443, 490, 
510 and 555 nm. 
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Chapter 13. Examples of IOP Applications 
Robert Arnone, Hubert Loisel, Kendall Carder, Emmanuel Boss, Stephane Maritorena, ZhongPing Lee 
 

The IOPs retrieved from ocean color provide innovative tools and opportunities for oceanographic 
studies, as their values can be used directly or indirectly to study biological and biogeochemical processes 
in the oceans (e.g., Bissett et al. [2001], Gould and Arnone [1997], Coble et al. [2004], Hu et al. [2004; 
2005]). For instance, earlier studies (e.g., Kirk [1984] and Sathyendranath and Platt [1988]) have shown 
that the diffuse attenuation coefficients of the water can be adequately estimated from water’s inherent 
optical properties. Recent studies [Balch et al., 2005; Loisel et al., 2001a; Stramski et al., 1999] have 
shown that particulate carbon can be well estimated from particle backscattering coefficient. Further, a 
new generation of biological models [Bissett et al., 2005; Penta et al., 2005] now integrate explicitly two 
or more species of plankton, as well as dissolved (DOC) and particulate organic carbon (POC), whereas 
IOPs play important roles in observing and monitoring blooms of red tides [Cannizzaro et al., 2005; 
Cullen et al., 1997]. As confidence in the IOP products continues to grow, our understanding of how IOP 
properties are linked to ocean processes expands. These researches are moving the ocean community 
beyond the traditional applications centered on the oceanic chlorophyll. In this chapter, we present some 
examples of IOP applications in this regard. 

13.1 Water Composition and Water-Mass Classification 
The absorption and backscattering coefficients bring some complementary information on the water 

composition, because of their different sensitivity to the various optically significant materials in water. 
While the absorption coefficient is affected by the presence of both suspended and dissolved material in 
water, the backscattering coefficient represents the concentration (to first order) of organic and inorganic 
suspended particles, and bubbles. The decomposition of total absorption coefficient into its different 
components, as discussed in this report (Chapter 1), allows the monitoring of phytoplankton and of the 
remaining absorbing materials. Therefore, synoptic satellite observations of a and bb give a valuable 
picture of composition of surface waters. For example, the bbp/a ratio may be used to discriminate 
different families of particles (Figure 13.1).  

 
 
 
 
 
 
 
 
 
 
 

Chlorophyll-a [mg/m3]  bbp(555)/[a(490)-aw(490)] 
 
 

 
Figure 13.1. Comparison between the SeaWiFS-Chlorophyll concentration and the ratio of the particle 
backscattering to absorption obtained from an inverse algorithm [Loisel and Stramski, 2000] over the 
North Atlantic (south Island) in May 1998. As seen, Chl and bbp(555)/[a(490)-aw(490)] represent different 
patterns, with the latter clearly showing different particle populations. These particles have been 
identified as coccolithophorid, which are characterized by a high backscattering efficiency. 
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New applications have also used water’s IOP characteristics as a tool to fingerprint a water mass and 

identify the controlling optical processes [Arnone and Parsons, 2004]. Besides water absorption, the total 
absorption is additionally composed of the absorption from CDOM, detritus and phytoplankton (see 
Chapter 1). By defining the percent contribution of each of these components, a water mass can be 
defined by which component controls the absorption budget. A ternary plot of these three components 
provides a useful method for fingerprinting water mass and the dominant absorption process [Arnone et 
al., 2004; Gould and Arnone, 2003]. This method has been applied to satellite absorption properties 
derived from semi-analytical algorithms for SeaWiFS and MODIS ocean color imagery (Fig. 13.2a). This 
water-mass classification can be represented by an RGB image representing percent detritus, 
phytoplankton and CDOM absorption (Fig. 13.2b). These images easily illustrate the controlling 
biogeochemical processes for monitoring coastal and offshore water masses. Note that this classification 
method identifies the dominance of the absorption processes, and not the absolute values of the absorption 
coefficients. This classification method can be used on sequential satellite images of the absorption 
components to 1) identify changes in absorption processes and 2) tracking water masses based on a 
specific fingerprint of the absorption components.   
 

 73

OM 
 the 

Figure 13.2(a). Water-mass classification 
from the absorption budget. Ternary plot o
the percent absorption for detritus, CD
and phytoplankton for pixels identifies
dominant components.  

Figure 13.2(b). RGB image of percent absorption of 
detritus (Red), phytoplankton (green) and CDOM (blue). 
Absorption products derived from SeaWIFS were used 
to determine the absorption budget. Intensity of the c
indicates the dominant component.  
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13.2 Dissolved and Particulate Organic Carbon 
Examinations of the temporal variations of absorption and backscattering coefficients and comparison 

with that of Chl over the global ocean have also provided important information about the dynamics of 
marine particles and dissolved organic carbon, because the absorption and backscattering coefficients are 
related to different biogeochemical parameters. For instance, the feasibility of estimating POC (in 
mg/m3), and the colored detrital and dissolved materials (CDM) (in m-1), from the remotely detected bb 
and a was recently demonstrated [Balch et al., 2005; Loisel et al., 2002; Loisel et al., 2001b; Siegel et al., 
2002; Stramski et al., 1999] (see Figs. 13.3 and 13.4). A phase shift between the annual cycles of bbp and 
Chl was evidenced, and was attributed to the presence of a pool of non-pigmented particles originating 
from the accumulation of dead phytoplankton cells, as well as zooplankton detritus, in the summer 
stratified surface layer [Loisel et al., 2002]. “The decrease of the Chl/POC ratio in living phytoplankton at 
high irradiance in summer” was also used to explain “the lag between the Chl and bbp maxima” [Loisel et 
al., 2002]. 



 

 

Chl POC

 
Figure 13.3. Global Chl (SeaWiFS product) and POC [Loisel et al., 2002] distribution in January 2000.  

 
Figure 13.4 shows global distributions of CDM of two seasons in 1998, derived from SeaWiFS data 

[Siegel et al., 2002]. Clearly, there are significant spatial and temporal variations in global CDM (a part of 
DOC). Because POC and CDM represent different pools of carbon stored in oceans, and that CDM plays 
important role in regulating subsurface blue/ultraviolet radiation [Siegel et al., 2002], analysis of their 
spatial/temporal distributions is important for the understanding of the carbon cycles in oceans.  

Figure 13.4. Global distribution of CDM (in m-1) derived from SeaWiFS data by the GSM algorithm 
(Ch. 11) [Siegel et al., 2002].   

 
 
Behrenfeld et al. [2005], using backscattering and chlorophyll derived from Rrs as inputs, also 

developed a novel primary production model based on the physiological link between phytoplankton 
growth rate and growth conditions (temperature, nutrients, and light) as reflected in the ratio of 
chlorophyll to carbon of phytoplankton. This novel (and debatable) approach is to use the backscattering 
coefficient to estimate phytoplankton biomass and assuming a linear relation between total POC and 
phytoplankton biomass. The observed change (Fig. 13.5) in the ratio of chlorophyll to phytoplankton 
carbon is interpreted as reflecting a physiological change, rather than a change in the particulate 
composition. Net primary production is then computed from the estimated growth rate through a simple 
multiplication by the phytoplankton carbon and a function that accounts for its vertical distribution with 
depth. 
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Figure 13.6. (a) Measure Kd(490) vs Rrs-derived Kd(490). In the derivation of Kd from Rrs, 
values of a and bb were derived from Rrs first, and then Kd is calculated based on these a 
and bb values. From Lee et al. [2005b]. (b) Modeled Kvis(z) compared with Kvis(z) from 
Hydrolight simulations. From Lee et al. [2005a]. 

(a)   (b) 

 

Figure 13.5. Phytoplankton growth rates for Boreal: summer (left, June to August), winter (right, 

13.3 Diffuse Attenuation Coefficient of Downwelling Irradiance  
ts (bb) also makes it straightforward 

to cal

ee et 
s 

nge 

KVIS (wavelength range of 350 – 700 nm) is a parameter needed for models of oceanic 
photosynthesis and heat transfer in the upper water column. Different from the characteristics of Kd, KVIS 

 

December to February). From Behrenfeld et al. [2005]. 
 

The availability of absorption (a) and backscattering coefficien
culate the diffuse attenuation coefficient of downwelling irradiance, either at a single wavelength 

(Kd(λ)) or for the broad band (350 – 700 nm) visible domain (KVIS). Because both Kd and KVIS are 
apparent optical properties, they are directly linked to the IOPs [Gordon, 1989; Lee et al., 2005a; L
al., 2005b; Sathyendranath and Platt, 1988]. Traditionally, estimation of Kd is based on the spectral ratio
of Lw(λ) or Rrs(λ). Such an approach does not reveal the fundamental relationship between AOPs and 
IOPs, and is found to only work for waters with limited dynamic range [Mueller, 2000]. For a wide ra
of Kd(490) (~0.04 – 4.0 m-1) measured from different regions and at different times, Figure 13.6(a) shows 
a comparison between measured Kd(490) and Rrs derived Kd(490), using an algorithm based on  a and bb 
whose values were derived first from Rrs [Lee et al., 2005b]. Clearly, excellent agreement is achieved 
between the two independent measurements and determinations. 
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Figure 13.7. Daily primary production calculate
from R

d 
 rs versus that from in situ incubation. From

Lee et al. [1996b]. 

ng primary production calculated from values of 
R

varies significantly from the surface to a depth (z) even for vertically homogeneous waters. To represent 
this vertical variation, earlier studies used multiple exponential terms to describe the vertical propagation 
of visible solar radiation, with the coefficients of these multiple terms expressed as empirical functions of 
Chl [Morel and Antoine, 1994; Ohlmann and Siegel, 2000]. Again, realizing the intrinsic limitation 
between an optical property (e.g., KVIS) and Chl, a model has been developed [Lee et al., 2005a] that can 
be used to adequately estimate the vertical variation of KVIS when values of a(490) and bb(490) are 
available, with Fig. 13.6(b) showing modelled KVIS compared with Hydrolight-calculated KVIS for 
different values of a, bb, and z. The average difference between the two sets of KVIS(z) is 2.2%. 

 

13.4 Oceanic Primary Production 
Knowing the values of IOPs also provides some basic information for the estimation of oceanic 
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pointed out that this property varies widely from place 
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are automatically introduced when this parameter is 
involved. Because primary production measures the 
conversion of solar energy absorbed by phytoplankton 
to sustenance in the photosynthetic process [Morel, 
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13.5 Chl from Remotely Derived Pigment Absorp
When the absorption coefficient of phytop

possibility of deriving Chl [Carder et al., 1999; Lyon
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Figure 13.8. Global composited maps (December 2000) of chlorophyll a concentration (mg/m3) 
retrieved using empirical (top) and semi-analytic (bottom) algorithms from MODIS Terra 
radiometry (after Carder et al. [2004]). 

 
 

13.6 Monitoring Coastal Ocean Processes using IOPs and Numerical Circulation Models 
IOPs provide an improved capability to understand how physical processes influence the bio-optical 

processes [Arnone and Parsons, 2004; Bissett et al., 2001]. For instance, ocean color IOP products from 
MODIS and SeaWIFS are being integrated with numerical circulation models. The Navy Coastal Ocean 
Model (NCOM) is forced by large scale ocean models which currently assimilate sea surface height from 
altimetry and sea surface temperature (SST) from AVHRR. These models are at 32 degree resolution with 
41 sigma levels to characterize the mesoscale features (http://www7320.nrlssc.navy.mil/global_ncom/). 
Overlaying the modeled properties (currents, salinity, surface heights) with optical properties adds 
continuity to understanding IOP image products. This fusion of physical models and IOP imagery enables 
improved understanding of the distribution of bio-optical processes that are linked with mesoscale ocean 
circulation features. Different IOP properties, such as backscattering, CDOM and phytopla on 
abso ed 
with a et 
al., sed to 
defi . For example, the influence of the strong southerly flow off 

e Channel Islands is characterized by backscattering and total absorption products. Within this filament, 
e elevated particles are located south of the strong flow (point A) as shown in the bb(551) image (a 

result of advection), whereas the strongest currents (point B) located close to land have elevated total 
ent 

mes

nkt
rption respond differently to mesoscale processes. Along the U.S. West coast, filaments associat
 the California Current System are driven by the physical circulation as shown in Fig. 13.9 [Pent
2005; Shulman et al., 2004]. The corresponding IOP distribution within these filaments is u
ne the response of bio-optical processes

th
th

absorption as shown in the a(443) image (a result of coastal upwelling). Divergent and converg
oscale fronts are revealed by the IOP properties observed in satellite imagery (Fig. 13.9). Similar 

differences in the distribution of  backscattering and absorption have been observed by [Otero and Siegel, 
1995].   
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Figure 13.9. The circulation along the California Coast develops coastal filaments shown in surface 

currents and MODIS Aqua IOP products. Differences in the locations of backscattering at 551 nm 
(associated with particles) and the total absorption at 443 nm (detritus, CDOM and phytoplankton) 
indicate varying bio-optical processes within these filaments.    

 

13.7 Conclusions 
Our understanding of how the optical properties of water constituents are related to ocean processes 

has advanced significantly in the last decade. Use of IOPs to characterize ocean processes provides 
improved methods toward monitoring and understanding the role which the ocean has played on global 
scales. Because IOPs are closely associated with the water leaving radiance measured by satellites and 
IOP retrievals are robust and stable as shown by previous chapters, IOP products are critical for 
monitoring and detecting changes in the ocean’s climatology and forecasting ocean biogeochemical 
processes.  
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Chapter 14. Summary and Conclusions  
ZhongPing Lee, J. Ronald V. Zaneveld, Stephane Maritorena, Hubert Loisel, Roland Doerffer, Paul Lyon, 
Emmanuel Boss, Kendall L. Carder, Emmanuel Devred, Robert Arnone 
 

Inherent optical properties (IOPs) are the fundamental parameters of hydrological optics. The IOPs, in 
combination with radiances from the sun and sky, determine water-leaving radiance, which in turn defines 
water color (an apparent optical property). At the same time, IOPs are also environmental properties. 
Their variation is directly related to changes in concentration, size distribution and composition of 
particulate matter and/or dissolved constituents. IOPs derived from remote sensing of ocean color provide 
innovative opportunities for environmental observation and oceanographic studies on time and space 
scales not achievable with in situ measurements.  

To accurately derive various IOPs from water color, as presented in this report, is not an easy and 
straightforward task. This report presents some frequently encountered methods for IOP retrieval. The 
algorithms presented here have different levels of complexity; some are explicit about processes, some 
are inexplicit; some have less empirical inputs, while others have more empiricism built into them. 
Obviously, there remains room for improvement in the derivation of IOPs. As new information becomes 
available, it is anticipated that present algorithms could be improved, or exciting new methods would be 
developed. It is natural that algorithm development is always a continuing and evolving process.  

An algorithm works as a mathematical filter in analogy to physical or chemical filters used in the lab 
or field. In this filtering process, explicitly or inexplicitly, uncertainties are introduced into the desired 
products. More uncertainties are introduced when fewer parameters are under control. This concept is 
well illustrated with the IOP inversions, regardless of the method used. Fig. 1.3 in Chapter 1 and the 
algorithm results of each chapter, clearly show that the overall best properties that can be obtained from 
ocean color are the spectral absorption and backscattering coefficients of the total water volume. This is 
because they are the properties directly related to ocean color as observed by a space-borne sensor. When 
decomposing the total absorption coefficient into the components of phytoplankton pigments and colored 
matters, less accurate results are anticipated due to overlapping of spectral signals and because the 
spectral shapes of both components are not constant. Moreover, if the chlorophyll concentration is 
desired, more uncertainties will be introduced because the chlorophyll-specific absorption coefficient is 
not constant at a given wavelength, nor is the relationship between backscattering and chlorophyll well 
defined. 

Fundamentally, there are more unknown factors affecting the retrieval of Chl from ocean color than 
unknown factors affecting the retrieval of absorption and backscattering coefficients. For this reason, we 
should revisit why Chl should remain the primary product of ocean color remote sensing rather than the 
IOPs of the bulk water or the optical properties of phytoplankton. The robust and stable results of the total 
absorption and backscattering coefficients from these various algorithms, which are developed 
independently and are based on different principles, clearly indicate that these optical properties should be 
taken as standard products for all ocean color satellite missions. These optical properties, resembling the 
sea surface temperature, can well serve as climatology data records to study the long-term change of the 
oceans.  

Because inherent optical properties provide important indices for our water environments and open 
new doors for oceanographic studies, we should spend a good deal of effort on the following subjects to 
improve IOP products:  

a. Increased high-quality in situ co-located measurements of remote-sensing reflectance and 
IOPs. 

b. Improved methods to select model parameters such as the spectral shapes of individual IOPs 
that include bb(λ), aph(λ) and adg(λ). Separation of the global ocean into dynamic biogeochemical 
provinces may provide vital help in this regard (for more information please visit 
http://www.ioccg.org/groups/dowell.html for “Global Ecological Provinces”).  

c. Better quantification of uncertainties in derived products.  
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d. Algorithms based on fundamentals of hydrological optics. Simple empirical relationships 
prevent understanding of the basics and, therefore, limit advancement in ocean color remote sensing.  

e. Space based sensors should be equipped with at least a spectral band in the region of 620 – 640 
nm. Such a band is important for coastal remote sensing. Current sensors such as SeaWiFS or MODIS 
lack such a band. The 670 nm or 680 nm bands of SeaWiFS and MODIS are more or less contaminated 
by chlorophyll-a fluorescence. Fortunately, the MERIS sensor of ESA does have a band around 620 
nm.  

f. Improved procedure for atmospheric correction. All algorithms tested use remote-sensing 
reflectance (Rrs) as inputs for the calculation of IOPs. Quality of Rrs, which is one of the products 
derived from atmospheric correction, plays a critical role in the accuracy of retrieved IOPs. Addition of 
UVa bands would assist the derivation of Rrs from satellite measured radiance, especially for coastal 
waters. Also, such bands may increase the ability to separate phytoplankton absorption from that of 
dissolved and non-pigmented particulate materials. 

g. And, finally, enhance and broaden applications of IOPs for oceanographic studies, which are 
the ultimate goal of ocean color remote sensing.  

It is necessary to point out that in this exercise the water column is assumed homogeneous in water 
properties. Passive optical remote sensing becomes quite a challenge when the water column is 
significantly stratified. Further, we did not discuss issues related to optically shallow environments in this 
report. 

In the past decade, there have been significant progresses in remote sensing of IOPs from the 
observation of ocean color and applications of IOPs in oceanography studies. However, as listed above, 
there are still many works ahead of us in ocean color remote sensing. 
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Acronyms and Abbreviations 
 
 
 
AOP Apparent Optical Property 
AUV Autonomous Underwater Vehicle 
CDM Colored Detrital and Dissolved Material 
CDOM Colored Dissolved Organic Matter 
CZCS Coastal Zone Color Scanner 
DOC Dissolved Organic Carbon 
ERT Equation of Radiative Transfer 
GSM Garver Siegel Maritorena 
IOP Inherent Optical Property 
LMI Linear Matrix Inversion 
MERIS Medium Resolution Imaging Spectrometer 
MOBY Marine Optical Buoy 
MODIS Moderate Resolution Imaging Spectroradiometer 
NCOM Navy Coastal Ocean Model 
NDT Nitrate Depletion Temperature 
NN Neural Network 
NPOESS National Polar-orbiting Operational Environmental Satellite System 
NWLR Normalized Water Leaving Radiance 
POC Particulate Organic Carbon 
QAA Quasi Analytical Algorithm 
RMSE Root Mean Square Error 
SeaBASS SeaWiFS Bio-Optical Archive and Storage System 
SeaWiFS Sea-viewing Wide Field-of-view Sensor 
VIIRS Visible Infrared Imager Radiometer Suite 
VSF Volume Scattering Function 
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