

Impact of Instrument Calibration and Instrument Characterization on Vicarious Calibration

Gerhard Meister

OBPG (Ocean Biology Processing Group) NASA Goddard Space Flight Center, Code 616

December 2nd, 2013

Presentation at workshop 'Ocean Color System Vicarious Calibration for Science and Operational Missions'

Frascati, Italy

Absolute calibration: does it matter?

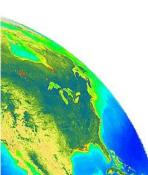
- Vicarious calibration coefficients are relative to the absolute calibration of the instrument, effectively replacing it (uncertainty associated with abs. cal. is 'lost')
- Although the numeric values of the vicarious calibration/adjustment coefficients depend on the choice for absolute calibration approach, there should be no impact on the ocean color products
- Vicarious gain/adj. larger than combined uncertainty should be a warning flag (OCM-2)
- SeaWiFS: prelaunch absolute calibration (sphere radiance), on-orbit lunar trending
- MODIS, MERIS: on-orbit absolute calibration and relative trending with solar diffuser (reflectance)
- Uncertainty associated with sphere radiance is usually higher than uncertainty associated with reflectance, so MODIS/MERIS approach is preferred
 - Absolute calibration still needed for those bands not vicariously calibrated (e.g. 865nm for SeaWiFS), but only with 5% 2 ncertainty (Menghua Wang)

Temporal trending:

- Uncertainty in the temporal trending negatively impacts accuracy of vic. gain
- But by how much?
- Extreme example: instrument gain is too high at beginning of mission, too low at end of mission by same amount, changing linearly, matchups are evenly spaced in time: net effect zero?
- Another example: MOBY/MODIS matchups mainly in winter, seasonal error in instrument gain trending (e.g. via polarization sensitivity) would bias vic. gain

Scan/View angle dependence:

- Glint for non-tilted sensors favors matchups at certain view angles
- For example, MODIS third quarter of the scan has largest glint contamination, lowest number of matchups; for MERIS, number of matchups should vary strongly with camera
- Note that an observed variation of vic. gain coef. with sensor zenith angle could be due to
 - instrument characterization
 - atmospheric correction
 - ocean BRDF


Straylight:

- Straylight increases the measured radiance next to clouds
- Not a problem if there is a perfect straylight correction (haha)
- Screening of matchups for vicarious gains is usually more stringent than regular processing, which could lead to a bias

Other effects:

- **Imperfect Temperature correction:** If there is a significant temperature variation within an orbit, an in-situ site at a high latitude could cause a bias
- **Imperfect Polarization correction:** could lead to variations of vic. Gain coefs. with time and scan angle
- **Relative Spectral Response:** a varying RSR (e.g. varying with view angle) could impact vic. gain (depending on magnitude of RSR variation)
- **Imperfect Linearity correction:** most likely result would be a scan angle dependence of the vic. gain coefficients (radiances are highest at the edge of scan)

