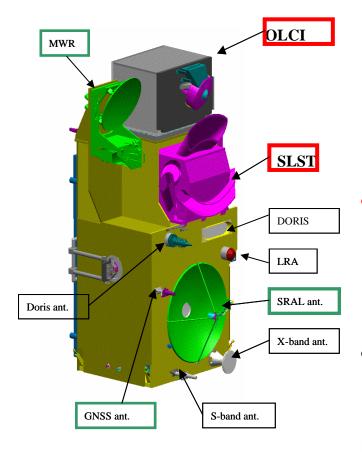





- Sentinel-3 is one element of the GMES system
- Sentinel-3 is an operational mission for oceanography & global land applications
- Provides continuity of existing missions, delivering:
  - Sea/Land colour data (at least MERIS quality)
  - Sea/Land surface temperature (at least AATSR quality)
  - Sea surface topography data (at least Envisat RA quality)
- Applicable Sentinel-3 user requirements identified through surveys conducted within the relevant user groups:
  - Operational and Institutional Oceanography Groups
  - Oceanographic Research Users
  - Land Users
- A series of satellites, each designed for a lifetime of 7 years, shall provide an operational service over 15 to 20 years
  - Only 1 satellite is in development at this moment










## S-3 Payload Complement



#### • Topography Mission

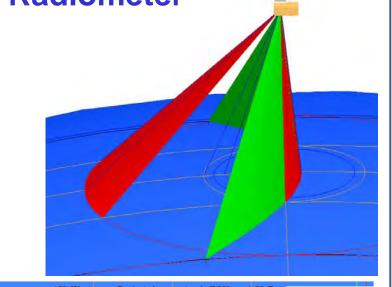
- Bi-frequency Ku/C Band SAR Radar Altimeter
- MicroWave Radiometer (2 or 3 frequencies)
- Precise Orbit Determination incl.
  - GNSS Receiver
  - Laser Retro-Reflector

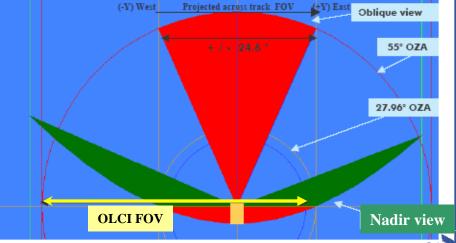
#### Optical Payload

- Ocean and Land Color Instrument (OLCI)
- Sea and Land Surface Temperature (SLST)
  Radiometer

#### Optional Payload

- FIRE Infrared Element

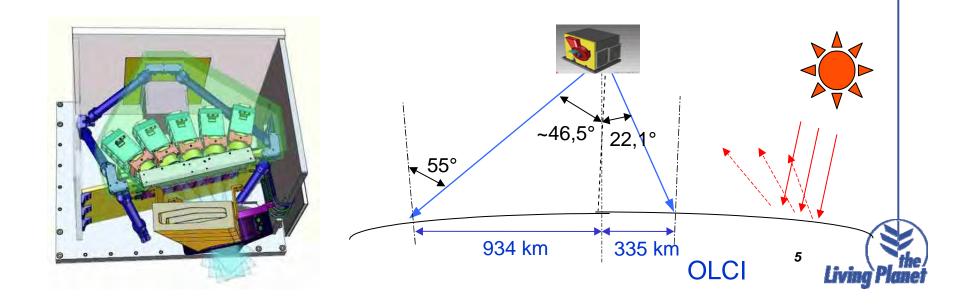

NOTE: Decision to embark FIRE to be taken by PDR July 2008






# **Sea & Land Surface Temperature Radiometer**

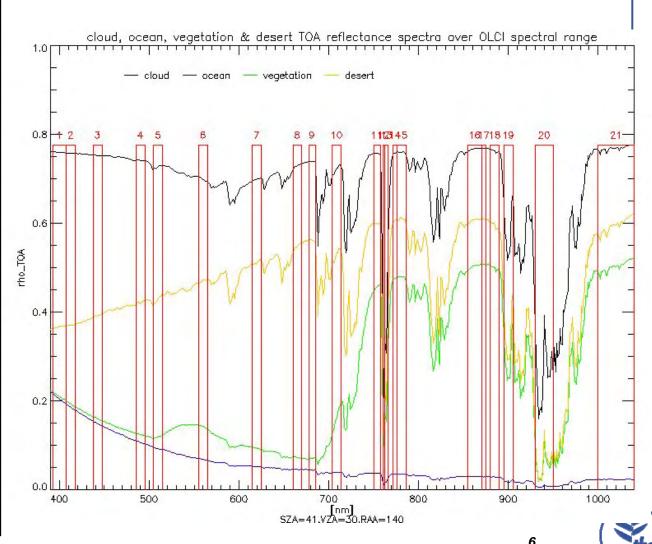
- Heritage from AATSR, dual-view (nadir & backward) required for aerosol corrections:
  - Nadir swath >74° (up to 1800 km)
  - Dual view swath 49° ~ 750 km
  - Nadir swath covering OLCI
- 9 spectral bands:
  - 3 Visible: 555 659 865 nm
  - 3 SWIR : 1.38 1.61 2.25 μm
  - 3 TIR : 3.74 10.85 12  $\mu m$
- One Vis/IR channel used for registration with OLCI





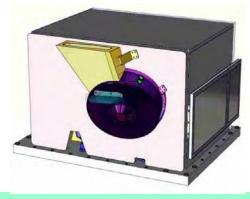



## **Ocean Land Colour Instrument**


- Pushbroom-type imaging spectrometer similar to MERIS
- 5 cameras, arranged cross-track, with a de-pointing of 12.20°
- 21 programmable spectral bands [400-1020] nm
- FOV 68.6°, ~1250 km swath
- Swath covered by SLST (for atmospheric correction)
- Calibration based on 2 spectralon & 1 sun doped diffusers






# **OLCI Spectral Channels**

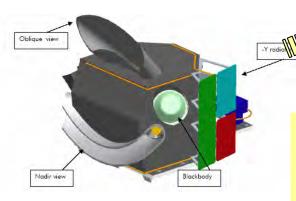
| Channel | Central wavelength (nm) | Width<br>(nm) |
|---------|-------------------------|---------------|
| 1       | 400                     | 15            |
| 2       | 412.5                   | 10            |
| 3       | 442.5                   | 10            |
| 4       | 490                     | 10            |
| 5       | 510                     | 10            |
| 6       | 560                     | 10            |
| 7       | 620                     | 10            |
| 8       | 665                     | 10            |
| 9       | 681.25                  | 7.5           |
| 10      | 708.75                  | 10            |
| 11      | 753.75                  | 7.5           |
| 12      | 761.25                  | 2.5           |
| 13      | 764.375                 | 3.75          |
| 14      | 773.75                  | 5             |
| 15      | 781.25                  | 10            |
| 16      | 862.5                   | 15            |
| 17      | 872.5                   | 5             |
| 18      | 885                     | 10            |
| 19      | 900                     | 10            |
| 20      | 940                     | 20            |
| 21      | 1020                    | 40            |





## **Resolution of optical instruments**






Pushbroom type imager spectrometer

**21 Spectral Channels** 

**Full Resolution: Coastal/Land Reduced Resolution: Open Ocean** 

| OLCI – Coastal ocean    | 300 m |
|-------------------------|-------|
| OLCI - Land             | 300 m |
| SLST – solar channels   | 500 m |
| SLST – Thermal channels | 1 km  |



Conical scanning imaging radiometer with dual view capability:

- Near-nadir view
- Inclined view with an OZA of  $55^{\circ} \pm 0.1^{\circ}$
- 9 Spectral Channels + 2 (option) for Active FIRE

**OLCI – Open ocean** 

1.2 km



### **Mission Orbit**

Type: Frozen, sun-synchronous low earth orbit

Repeat cycle: 27 days (14+7/27 orbits per day)

Average altitude: 814.5 km over geoid

Mean solar time: 10:00 at descending node

Inclination: 98.65°

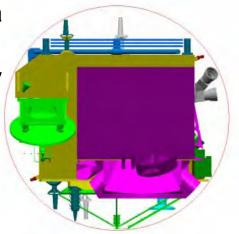
|                     |             | Revisit at Equator | Revisit for latitude >30° | Requirement |  |
|---------------------|-------------|--------------------|---------------------------|-------------|--|
| OC (Sun-glint free) | 1 Satellite | < 3.8 days         | < 2.8 days                | . O dovo    |  |
|                     | 2 Satellite | < 1.9 days         | < 1.4 days                | < 2 days    |  |
| Land Colour         | 1 Satellite | < 2.2 days         | < 1.8 days                | < 2 days    |  |
|                     | 2 Satellite | < 1.1 day          | < 0.9 day                 |             |  |
| SLST dual view      | 1 Satellite | < 1.8 days         | < 1.5 days                | 4 A days    |  |
|                     | 2 Satellite | < 0.9 day          | < 0.8 day                 | < 4 days    |  |

To meet the full operational service requirements a two-satellite constellation is required





**VEGA** 

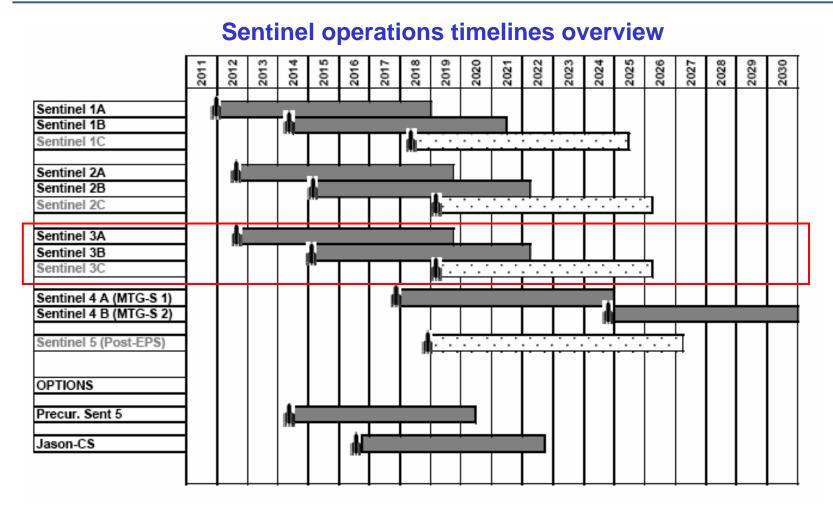

## **Main Satellite Characteristics**

Mass ~ 1270 Kg

Power ~ 1100 W

 2 x 225 Mbps X-band science data downlink

330 Gbit solid state mass memory






- VEGA nominal launcher (Kourou)
- Design lifetime: 7 years







Launch of B-Sentinels at least within 30 months from their respective Proto-Flight Models