International Ocean-Colour Coordinating Group ## **IOCCG Summer Lecture Series 2012** Frontiers in Ocean Optics and Ocean Colour Science Villefranche-sur-Mer, France, 2 – 14 July 2012 The 2012 Summer Lecture Series was sponsored and coordinated by the IOCCG using funds from all IOCCG contributing agencies. In addition, specific support for the lecture series from the organisations listed below is gratefully acknowledged: #### **IOCCG Summer Lecture Series 2012** ## Frontiers in Ocean Optics and Ocean Colour Science ## Villefranche-sur-Mer, France, 2-14 July 2012 #### **INTRODUCTION** The International Ocean Colour Coordinating Group (IOCCG) organized the first IOCCG Summer Lecture Series dedicated to high level training in the fundamentals of ocean optics, bio-optics and ocean colour remote sensing. This was a 2-week intensive course that took place from July 2nd – 14th at the Laboratoire d'Océanographie de Villefranche (LOV), Villefranche-sur-mer, France. A total of 13 renowned lecturers were invited to teach at the course and 17 students from 13 different countries took part in the course (see Appendix 1 - List of Training Course Participants). More than 100 students had applied to participate in the course and the 17 remaining applicants were primarily chosen with respect to their motivation and on the basis of their academic background. The majority of them were PhD students and post-Docs, and some were starting their careers as young researchers. The participants came from a broad range of backgrounds, but all were familiar with at least some domains of ocean colour science and had a solid understanding of ocean colour remote sensing. Course participants, lecturers and organizers of the 2012 ocean optics summer course #### **COURSES ORGANIZATION** The aim of the training course was to provide an overview of current critical issues in ocean colour science. The lectures were an opportunity for students and young researchers to obtain useful skills and knowledge for their current research. The format of the Summer Lecture Series was an intensive 2-week course that included a series of lecture sessions, practical sessions and open discussion sessions. (See Appendix 2 - Course schedule). In order for students to be able to prepare for the course, lecture synopsis (See Appendix 3 - Course synopsis) and suggestions for further reading were sent in advance to all participants. The information was also shared among lecturers to avoid overlaps between presentations. In order to provide the speakers with the average students' level, they received the students' Curriculum Vitae prior to the course. The course started with a welcome address by the OOV deputy Director, and then with a summary presentation of IOCCG. Then, each student introduced himself (herself) and his(her) work with a 5-10 minute PowerPoint presentation. This was an opportunity to get acquainted with the participants' academic backgrounds, their current positions and to share their experiences. This was a chance for the students to make contacts and discuss ideas with people with similar interests. The lecture sessions covered a wide range of topics in ocean colour, including ocean colour algorithms and their associated errors and uncertainties, hyper spectral remote sensing of optically shallow waters, atmosphere correction, phytoplankton fluorescence, multiple applications of remote sensing, *In situ* measurements and others topics (see appendix). The course also contained practical sessions with Hydrolight, Scilab, Excel and a presentation of instrumentation used at OOV for collection of novel *In situ* radiometric data. These sessions were helpful to understand some concepts and information on how models work. The discussions sessions allowed for interaction between the students and lecturers. Most of the lecturers attended other lectures, which provided additional opportunity for discussions between the lecturers, which the students found most enlightening. Also coffee breaks, lunches and organized social events (welcome cocktail and dinner) were a good possibility of interactions between and among lecturers and students. Welcome cocktail of the 2012 ocean optics summer course #### **COURSE EVALUATION** Students were given a questionnaire at the end of the course to their views on various aspects of the lecturers' performance and on aspects of the practical course organization. The conclusion for the 2012 Summer Lecture Series was that the students learned a lot and that they were very satisfied with the content of the lectures. They will immediately benefit from what they have learned during the course for their current research and will thus recommend the course to colleagues. They were also extremely satisfied with the practical organization and with the support from the local staff. (See Appendix 4 – Student's Reports). #### **CONCLUSION** The objectives of the 2012 IOCCG summer lecture series were reached, and the event was an outstanding success. The atmosphere among participants was very good and may lead to future collaboration between students and lecturers. All presentations were been made available to all participants. The courses were audio and video recorded and these recordings will be available online (http://www.ioccg.org/) by October 2012. #### **ACKNOWLEDGEMENTS** We are grateful to the contributions from all our sponsors, which made this training course possible. These courses were sponsored by IOCCG and with additional specific financial support from the following institutions and agencies: - Villefranche Observatory (OOV) - Centre National de la Recherche Scientifique (CNRS/INSU) - Centre National d'Etudes Spatiales (CNES) - Laboratoire d'Océanographie de Villefranche (LOV) - GIS COOC (Groupement d'Intérêt Scientifique COlour of the OCean) - Université Pierre et Marie Curie (UPMC) - National Aeronautics and Space administration of the USA (NASA) - Canadian Space Agency (CSA) - National Oceanic and Atmospheric Administration of the USA (NOAA) - Joint Research Centre of the European Commission (JRC) - Japan Aerospace Exploration Agency (JAXA) The organizing team would like to thank all participants and the OOV/LOV staff for their help in the organization and their support during the course. ## **Appendix 1 - List of Training Course Participants** ## **STUDENTS** | <u>Name</u> | <u>Institute</u> | <u>E-mail</u> | |-------------------|---|--------------------------------------| | Krista Alikas | Tartu Observatory,
Estonia | alikas@ut.ee | | Mathieu Ardyna | Laval University, Canada | Mathieu.Ardyna@takuvik.ulaval.ca | | Jong-Kuk Choi | Korea Ocean Research & Development Institute, Korea | jkchoi@kordi.re.kr | | Hayley Evers-King | University of Cape Town,
South Africa | hayleyeversking@gmail.com | | Martin Hieronymi | Helmholtz-Zentrum
Geesthacht, Germany | martin.hieronymi@hzg.de | | Robert Johnson | University of Tasmania,
Australia | robert.johnson@utas.edu.au | | Edward King | CSIRO, Australia | edward.king@csiro.au | | Kate Lowry | Stanford University, USA | kate.e.lowry@gmail.com | | Evgeny Morozov | Nansen International Environmental and Remote Sensing, Russia | evgeny@niersc.spb.ru | | Robinson Mugo | Kenya Marine and Fisheries Research Instiute, Kenya | robin_mugo@salmon.fish.hokudai.ac.jp | | Silvia Romero | Servicio de Hidrografía
Naval, Argentina | sroceano@apexar.com | | Natalia Rudorff | Instituto Nacional de
Pesquisas Espaciais,
Brazil | nmr@dsr.inpe.br | | Mariana Soppa | Alfred Wegener Institute,
Germany | msoppa@awi.de | | Emma Tebbs | University of Leicester,
UK | ejt15@leicester.ac.uk | | Kaire Toming | University of Tartu,
Estonia | kaire.toming.001@ut.ee | | Guoqing Wang | South China Sea Institute of Oceanography, China | gqwang@scsio.ac.cn | | Guanming Zheng | Scripps Institution of Oceanography, USA | zheng.sio@gmail.com | ## **LECTURERS** | <u>Name</u> | <u>Institute</u> | <u>E-mail</u> | |------------------|---|-----------------------------------| | Marcel Babin | Université Laval, QC,
Canada | marcel.babin@obs-vlfr | | Curt Davis | Oregon State University,
USA | cdavis@coas.oregonstate.edu | | Roland Doerffer | Helmholtz Center
Geesthacht, Germany | roland.doerffer@hzg.de | | Mark Dowell | Joint Research Centre, Ispra,
Italy | mark.dowell@jrc.ec.europa.eu | | Yannick Huot | Université de Sherbrooke,
Canada | Yannick.Huot@USherbrooke.ca | | Zhongping Lee | University of Massachusetts at Boston, USA | zhongping.lee@umb.edu | | Marlon Lewis | Dalhousie University,
Halifax, Canada | marlon.lewis@dal.ca | | Curtis Mobley | Sequoia Scientific Inc. WA,
USA | curtis.mobley@sequoiasci.com | | Kevin Ruddick | Royal Belgian Institute of
Natural Sciences, Belgium | K.Ruddick@mumm.ac.be | | Jorge Sarmiento | Princeton University, NJ,
USA | jls@princeton.edu | | Richard Stumpf | NOAA National Ocean
Service, USA | richard.stumpf@noaa.gov | | Menghua Wang | NOAA/NESDIS/STAR, USA | menghua.wang@noaa.gov | | Giuseppe Zibordi | Joint Research Centre,
Italy | giuseppe.zibordi@jrc.ec.europa.eu | # Appendix 2 - Course schedule | | Summer Lecture Series
2-14 July 2012, Villefranche-sur-Mer | | | | |--------------------|---|-----------|-----------------|--------------------| | Date | Subject | Lecturers | audio recording | video
recording | | Sunday 1 July 2012 | Participants arrive in Villefranche-sur-Mer | | | | | | | | | | | Monday 2 July 2012 | | | | | |--------------------|--|------------------------|---|---| | 09h00 - 09h10 | Welcome address | OOV deputy
Director | | | | 9h10-9h30 | Introduction to IOCCG and the lecture series rationale | David Antoine | | | | 09h10 - 10h30 | Personal
introductions (1/2) | Students | | | | 10h30 - 11h00 | Coffee Break | | | | | 11h00 - 12h10 | Personal introductions (2/2) | Students | | | | 12h30 - 14h00 | Lunch break | | | | | 14h00 - 15h30 | Ocean colour algorithms (1) | Mark Dowell | Х | Х | | 15h30 - 16h00 | Coffee Break | | | | | 16h00 - 17h30 | Inherent Optical Properties of ocean waters | Zhongping
Lee | х | х | | | | | | | | Tuesday 3 July 2012 | | | | | |---------------------|--|------------------------------------|---|---| | 09h00 - 10h30 | Ocean colour algorithms (2) | Mark Dowell | Х | Х | | 10h30 - 11h00 | Coffee Break | | | | | 11h00 - 12h30 | Inversion of Inherent Optical Properties from remote sensing | Zhongping
Lee | х | х | | 12h30 - 14h00 | Lunch break | | | | | 14h00 - 15h30 | Hyperspectral remote sensing of optically shallow waters | Curtis Mobley | х | х | | 15h30 - 16h00 | Coffee Break | | | | | 16h00 - 17h30 | Discussion session | Antoine,
Dowell, Lee,
Mobley | | | | | | IVIODICY | | | | Wednesday 4 July | | | | | |------------------|---|-----------------|------|---| | 2012 | | | | | | 09h00 - 10h30 | Atmospheric correction issues unique to shallow | Curtis Mobley | | Х | | | waters | Cui tis Mobiley | Х | ^ | | 10h30 - 11h00 | Coffee Break | | | | | 11h00 - 12h30 | IOP Applications | Zhongping | V | v | | 111100 - 121130 | | Lee | ee x | Х | | 12h30 - 14h00 | Lunch break | | | | | 14h00 - 15h30 | Techniques used for inverting atmospherically corrected Rrs spectra | Curtis Mobley | x | х | |----------------------|--|--|---|----------| | 15h30 - 16h00 | Coffee Break | | | | | 16h00 - 17h30 | Improved ocean ecosystem predictions through improved light calculations | Curtis Mobley | x | х | | | | | | | | Thursday 5 July 2012 | | | | | | 09h00 - 10h30 | Ecosystem predictions using accurate radiative transfer models | Curtis Mobley | х | х | | 10h30 - 11h00 | Coffee Break | | | | | 11h00 - 12h30 | Above- and In-Water Radiometry: Methods and Calibration Requirements | Giuseppe
Zibordi | х | х | | 12h30 - 14h00 | Lunch break | | | | | 14h00 - 15h30 | Practical Session - HydroLight software | Curtis Mobley | | | | 15h30 - 16h00 | Coffee Break | | | | | 16h00 - 17h30 | Practical Session - HydroLight software (contd.) | Curtis Mobley | | | | | | | | | | Friday 6 July 2012 | | | | <u> </u> | | 09h00 - 10h30 | Uncertainty analysis and application of in situ radiometric products | Giuseppe
Zibordi | х | х | | 10h30 - 11h00 | Coffee Break | | | | | 11h00 - 12h30 | Practical Session - HydroLight software | Curtis Mobley | | | | 12h30 - 14h00 | Lunch break | | | | | 14h00 - 15h30 | Practical Session - HydroLight software | Curtis Mobley | | | | 15h30 - 16h00 | Coffee Break | | | | | 16h00 - 17h30 | Practical Session - HydroLight software (contd.) | Curtis Mobley | | | | | | | | | | Saturday 7 July 2012 | | | | | | 09h00 - 10h30 | In situ measurements (1) | Marlon Lewis | Х | х | | 10h30 - 11h00 | Coffee Break | | | | | 11h00 - 12h30 | Discussion session | Lewis,
Antoine,
Mobley,
Zibordi | | | | 12h30 - 14h00 | Lunch break | | | | | 14h00 - 15h30 | Demonstration of instruments | Zibordi,
Lewis,
Antoine | | | | 15h30 - | FREE | 130 | | | | | | | | | | | | | | | | Sunday 8 July 2012 | | | | | FREE | Monday 9 July 2012 | | | | | |--------------------|---|--------------------|---|---| | 09h00 - 10h30 | Errors and uncertainties in ocean colour remote sensing (1) | Roland
Doerffer | х | х | | 10h30 - 11h00 | Coffee Break | | | | | 11h00 - 12h30 | In situ measurements (2) | Marlon Lewis | х | х | | 12h30 - 14h00 | Lunch break | | | | | 14h00 - 15h30 | Errors and uncertainties in ocean colour remote sensing (Exercises) | Roland
Doerffer | | | | 15h30 - 16h00 | Coffee Break | | | | | 16h00 - 17h30 | Errors and uncertainties in ocean colour remote sensing (Exercises) | Roland
Doerffer | | | | | | | | | | Tuesday 10 July 2012 | | | | | |----------------------|---|--------------------------------|---|---| | 09h00 - 10h30 | Errors and uncertainties in ocean colour remote sensing (2) | Roland
Doerffer | х | х | | 10h30 - 11h00 | Coffee Break | | | | | 11h00 - 12h30 | High-resolution hyperspectral OC RS in coastal areas (1) | Curt Davis | х | х | | 12h30 - 14h00 | Lunch break | | | | | 14h00 - 15h30 | High-resolution hyperspectral OC RS in coastal areas (2) | Curt Davis | х | х | | 15h30 - 16h00 | Coffee Break | | | | | 16h00 - 17h30 | Discussion session | Doerffer,
Antoine,
Davis | | | | | | - | | | | Wednesday 11 July 20 | 012 | | | | |----------------------|--|--------------------|---|---| | 09h00 - 10h30 | Atmospheric correction of ocean colour RS observations (1) | Menghua
Wang | х | х | | 10h30 - 11h00 | Coffee Break | | | | | 11h00 - 12h30 | Use and importance of OC remote sensing in global coupled BGC models | Jorge
Sarmiento | х | х | | 12h30 - 14h00 | Lunch break | | | | | 14h00 - 15h30 | Atmospheric correction of ocean colour RS observations (2) | Menghua
Wang | х | х | | 15h30 - 16h00 | Coffee Break | | | | | 16h00 - 17h30 | Ocean colour remote sensing in turbid coastal waters (1) | Kevin Ruddick | х | | | | | | | | | Thursday 12 July 2012 | | | | | |-----------------------|--|--------------------|---|---| | 09h00 - 10h30 | Using the OC time series to address climate change | Jorge
Sarmiento | х | х | | 10h30 - 11h00 | Coffee Break | | | | |---------------|--|--|---|---| | 11h00 - 12h30 | Atmospheric correction of ocean colour RS observations (3) | Menghua
Wang | х | х | | 12h30 - 14h00 | Lunch break | | | | | 14h00 - 15h30 | Ocean colour remote sensing in turbid coastal waters (2) | Kevin Ruddick | х | | | 15h30 - 16h00 | Coffee Break | | | | | 16h00 - 17h30 | Discussion session | Ruddick,
Sarmiento,
Antoine,
Wang | | | | | | | | | | Friday 13 July 2012 | | | | | |---------------------|---|------------------------------------|---|---| | 09h00 - 10h30 | Harmful algal blooms: the contrast with other algal blooms Richard Stumpf | | х | х | | 10h30 - 11h00 | Coffee Break | | | | | 11h00 - 12h30 | Ocean colour remote sensing in high latitude environments (1) | Marcel Babin | х | х | | 12h30 - 14h00 | Lunch break | | | | | 14h00 - 15h30 | Harmful algal blooms: the contrast with other algal blooms Richard Stump | | х | х | | 15h30 - 16h00 | Coffee Break | | | | | 16h00 - 17h30 | Discussion session | Huot, Babin,
Stumpf,
Antoine | | | | | | | | | | nytoplankton fluorescence: theory and terpretation from OC remote sensing (2) | Yannick Huot | | | |---|---|---|--| | terpretation from Severible Sensing (2) | Tarrifick Haot | Х | X | | offee Break | | | İ | | cean colour remote sensing in high latitude nvironments (2) | Marcel Babin | х | х | | unch break | | | 1 | | Phytoplankton fluorescence: theory and interpretation from OC remote sensing (1) Yannick H | | х | х | | offee Break | | | i | | .6h00 - 17h30 Discussion session and conclusion of Summer Lecture Series 2012 | | | | | is | ean colour remote sensing in high latitude vironments (2) nch break vtoplankton fluorescence: theory and erpretation from OC remote sensing (1) ffee Break cussion session and conclusion of Summer | can colour remote sensing in high latitude vironments (2) Inch break vitoplankton fluorescence: theory and erpretation from OC remote sensing (1) If ee Break cussion session and conclusion of Summer Babin, Huot, | ean colour remote sensing in high latitude vironments (2) Inch break vtoplankton fluorescence: theory and erpretation from OC remote sensing (1) If ee Break cussion session and conclusion of Summer Babin, Huot, | ## Appendix 3 - Course synopsis ### Mark Dowell - Ocean Colour Algorithms European Commission Joint Research Centre (JRC), Ispra, Italy This session on in-water algorithms will trace the history of the development of algorithmic methods applied to Ocean Colour data starting with the very first algorithms applied to global datasets obtained from the CZCS sensor. We will outline the evolution of algorithm development as our knowledge (and data!) on the optical properties of both open-ocean and coastal waters have improved over the last three decades. Additionally we will examine the mathematical and statistical approaches (neural networks, non-linear optimisation, spectral un-mixing, principal component analysis etc.) that have been explored to make best use in using the radiometric quantities measured by the sensors in retrieving the relevant geophysical quantities of interest. Specific attention will be placed on emphasising the complexities of applying such methods in coastal regions, and considerations will be made on the limitations and uncertainties that need to be
understood. Furthermore we will analyse the parallel progress of both the empirical and semianalytical method, and consider the merits and deficiencies of each of these, providing a clear understanding of the difference between these methods and their practical application in the operational processing of data (see flowchart below). Complimentary to this we will specifically consider the results from an intensive round robin intercomparison of different semi-analytical methods (performed by the IOCCG). In considering all of these various aspects of different available algorithms we will underline which algorithms have been considered for routine processing by the major space agencies (and why). Continuing we shall address the relative benefit of using standard global coverage products compared to regional algorithms and vice versa, and explore various alternatives for the implementation of regional algorithms. Here we will investigate the "minimum requirements" for the implementation of such regional algorithms (i.e. required datasets, "Level" of satellite data required, computing requirements). Finally we will make some considerations on the future direction for research on these topics. And deal with any real world examples/questions that participants may have and want to address. #### **Background Reading** In preparation for the course, it is suggested that participants consult the following, freely available, IOCCG reports (a more detailed bibliography, on specific topics, will be provided during the course): Working group on Ocean Colour in Case 2 Waters (Chaired by Shubha Sathyendranath): IOCCG Report 3 (2000). *Remote Sensing of Ocean Colour in Coastal, and Other Optically-Complex, Waters* (http://www.ioccg.org/reports/report3.pdf) Working group on Ocean Colour Algorithms (Chaired by ZhongPing Lee): IOCCG Report 5 (2006). *Remote Sensing of Inherent Optical Properties: Fundamentals, Tests of Algorithms, and Applications*. (http://www.ioccg.org/reports/report5.pdf) ## **Zhongping Lee - Lecture on Inherent Optical Properties** Environmental Earth and Ocean Sciences University of Massachusetts at Boston, MA 02125, USA #### **Objectives** This lecture is designed to provide an overview of the fundamentals of Inherent Optical Properties (IOPs), its relationship with AOPs, algorithms to invert IOPs from AOPs, as well as applications of IOPs. #### **Topics** Lecture 1: Fundamentals of IOPs and IOP-AOP relationships Lecture 2: Algorithms to invert IOPs Lecture 3: Applications of IOPs #### **Approach** I will give focused lectures along with hands-on practices. Advanced reading materials will be handed out to broaden knowledge. # <u>Curtis Mobley - Radiative Transfer Theory Applied to Problems in Optical</u> <u>Oceanography</u> Sequoia Scientific, Inc., WA 98005, USA - **Lecture 1**. Hyperspectral remote sensing of optically shallow waters. I'll give an of overview of the problem, what information people need in shallow waters, and what differences there are with deep water. - **Lecture 2.** Atmospheric correction for shallow waters. I'll talk about why atmosphere correction for deep case 1 water doesn't work for shallow water, and what techniques are used for shallow waters. - **Lecture 3.** Techniques for inverting spectra: I'll talk about semi-analytic and spectrum matching techniques for retrieving bathymetry, bottom type, and water IOPs, with the emphasis on bathymetry and error analysis. - **Lecture 4.** Ecosystem modeling. I'll talk about improvements to ocean ecosystem models when more accurate light calculations are used. - **Lecture 5.** More Ecosystem modeling. I guess I'll finish up Lecture 4. HydroLight training. 5 lectures and labs. All sorts of things from an overview of the software, to demonstration runs, to students running H on their own computers ## <u>Giuseppe Zibordi - In Situ Optical Radiometric Measurements and Products</u> Joint Research Centre of the European Commission Ispra, Italy #### Lecture 1: Above- & In-Water Radiometry (Methods & Calibration Requirements) *In situ* optical radiometric measurements have direct application in the development and assessment of: - i. theoretical models describing extinction of light in seawater; and - ii. empirical algorithms linking the seawater apparent optical properties to the optically significant constituents expressed through their inherent optical properties or concentrations. In addition, in situ radiometric data are essential for the vicarious calibration of space sensors and the validation of remote sensing products. The most accurate input data is always the most desirable for any bio-optical modeling and calibration or validation activity. However, accuracy requirements impact methodological and instrumental investment which should be weighed against the specific need for each application. The lecture, after a brief introduction to radiometric concepts and terminology, addresses the fundamentals of above- and in-water field radiometry. This includes a review of instruments, measurement methods and data analysis. Additional elements addressed in the lecture include an overview of calibration requirements and methods for ocean color field radiometry. These latter include an introduction to absolute radiometric calibration of radiance and irradiance sensors, determination of the geometric response of cosine collectors, characterization of immersion factors for in-water sensors. Finally, inter-comparisons of radiometric products derived from different measuring systems and methods are used to discuss individual performances. #### Lecture 2: In Situ Radiometric Products (uncertainty analysis and applications) Data products from in-water radiometric measurements generally include spectral values of: irradiance reflectance, remote sensing reflectance, normalized water-leaving radiance, diffuse attenuation coefficient and the so called Q-factor. Data products from above-water radiometric measurements are generally restricted to the normalized water-leaving radiance and the remote sensing reflectance. By restricting the analysis to the normalized water-leaving radiance, the lecture addresses the various sources of uncertainties affecting *in situ* radiometric measurements (e.g., accuracy of absolute calibration, superstructure perturbations, changes in illumination conditions, wave effects and self-shading for in-water methods only). Emphasis is placed in the evaluation of methods allowing for the minimization of the various perturbing effects and additionally in the quantification of contributions of these latter to uncertainty budgets. Further element considered in the lecture is the application of *in situ* radiometric data to the assessment of satellite primary products (i.e., the normalized water leaving radiance determined from top-of-atmosphere radiance corrected for the atmospheric perturbations). Focus is placed on the use of *in situ* data to evaluate differences in cross-mission products (i.e., normalized water leaving radiance from SeaWiFS, MODIS-A, MODIS-T and MERIS), variations in space system performance with time and intra-annual changes in accuracy. #### Suggested reading: G. Zibordi and K.J. Voss. Field Radiometry and Ocean Color Remote Sensing. In *Oceanography from Space, revisited*. V. Barale, J.F.R. Gower and L. Alberotanza Eds., Springer, Dordrecht, pp. 365-398, 2010. #### Marlon R. Lewis - In Situ Measurements Department of Oceanography, Dalhousie University, Halifax, NS, Canada Marlon.Lewis@dal.ca #### Lecture 1. In situ Measurements (1). Saturday, 0900-1030 h. Starting from a base in the radiative transfer equation, the fundamental measurement of the underwater radiance field will be introduced. Historical observations will be traced through two recent developments. These measurements will be used to introduce (or reintroduce) various integrated radiometric quantities: the planar and scalar irradiances, the average cosines, and reflectances. Variations in the radiance distribution along a path (say in the vertical) brings together consideration of the fundamental inherent optical properties, the absorption coefficient and volume scattering function, as well as the beam and diffuse attenuation coefficients and scattering coefficients over various solid angles. Modern methods for the independent measurement of these quantities will be presented and discussed. Attempts at optical closure field experiments will be presented. #### Lecture 2. In situ Measurements (2). Monday, 1100-1230 A brief review of the instrument concepts introduced in the first lecture will be followed by a discussion of some new and novel platforms for the measurement of underwater optics. Emphasis will be on autonomous measurement systems: moored platforms, autonomous underwater and surface vehicles, gliders, surface drifters, profiling floats, and animal tags. The lecture will finish with a discussion of two ancient optical measurement devices, and the surprising utility of these for solving modern problems in biological oceanography. **Background reading** to be completed prior to lecture: Ocean Optics Web Book. http://www.oceanopticsbook.info/view/introduction/overview ## Roland Doerffer - Errors and Uncertainties in Ocean Colour Remote Sensing Helmholtz Center Geesthacht /Brockman Consultants Germany roland.doerffer@hzg.de One of the main questions you will be asked as a remote sensing expert is: how reliable and good is information, which we derive from remotely sensed ocean colour data? Can we trust them? What is the error or uncertainty range of these data? In this section of the IOCCG training course, which consists of 3 lectures and exercises, we will look into this problem. #### Lectures The first lecture will be dedicated to the sources of uncertainties. We have to consider that our observations are the reflectivity in a number of spectral bands, which are measured at the top of atmosphere (TOA) or, in case of an aircraft platform, in a
certain height above the water. We try nothing less than to isolate, retrieve and quantify a small effect on these spectra, which is caused by absorption and scattering of e.g. of phytoplankton, from a large number of other effects, of which in particular the atmosphere dominates the TOA spectrum. Problems of this kind may induce large uncertainties. In some cases it might be even impossible to retrieve reliable information of the ocean from remotely sensed reflectance spectra. Thus, one important area of ocean colour research is to analyze sources of uncertainties, to develop methods to quantify uncertainties and finally to find way to reduce uncertainties. In this lecture we will consider - Natural factors, which determine uncertainties, and their variability - Uncertainties, which are induced by reducing the manifold of factors to a few dominant wavelength (nm) - Radiance (Wm-2 sr-1 μm-1) air molecules different aerosols thin clouds - Sky reflectance Sun glint foam floating material chlorophyll - Suspended particles different phytoplankton species dissolved organic matter - Vertical distribution Bottom reflection contrails Factors, which determine top of atmosphere reflection spectra, from which try to retrieve e.g. the chlorophyll concentration - Firrors caused by spaceborne or airborne instruments: calibration, ageing, noise - > Errors caused by in situ measurements, sampling and procedures - Problem of comparing in situ with space borne observations In the **second lecture** we look into procedures, how to determine uncertainties: - How to quantify uncertainties: scatter, bias, robustness, stability - Validation procedures and strategies - > Testing of algorithms - Round robin exercises - Sensitivity studies - Determination of uncertainties on a pixel by pixel bases - flagging The **third lecture** will finally discuss the results of our exercises and will be dedicated to the question, how to reduce uncertainties. This is a wide field, where a lot of research is still needed, and it offers themes for your future work. - > Detection of spectra / pixels, which are out of scope of the algorithm - Masking of clouds and cloud shadows - > Use of additional information - > Pre-classification of water types and use of dedicated algorithms - How to produce maps from satellite data, which include information about uncertainties. #### **Exercises** Beside the lectures and discussions, we have 3 hours for exercises concerning uncertainties. Here we will look into the information content of reflectance spectra and compare this with the information, we want to derive. We will also look into in situ data and determine uncertainties when comparing the optical properties with concentrations. Another exercise is dedicated to the uncertainties caused by the vertical distribution of water constituents. Finally we will determine the uncertainty when retrieving IOPs from reflectance spectra of different mixtures of water constituents. #### Important: For the exercises we will use pre-prepared software modules written in Scilab, a freely available programming system, which is similar to Matlab. You can download Scilab from www.scilab.org, version 5.3.3. ## <u>Curtiss Davis - High-Resolution Hyperspectral Ocean Colour Remtoe Sensing in</u> <u>Coastal Areas</u> College of Oceanic Atmospheric Sciences, Oregon State University Corvallis, OR 97331-5503, USA **Part 1** covers the nature of hyperspectral imaging and the history of the development including airborne systems AVIRIS, PHILLS and the new PRISM, and the spaceborne HICO instrument on the International Space Station (http://hico.coas.oregonstate.edu). Calibration and characterization of the sensors and on-orbit calibration is also covered. **Part 2** covers the algorithms and processing of the data to produce ocean products including atmospheric correction, algorithms for both optically shallow (e.g. coral reefs) and optically deep (e.g. river plume) coastal environments. Example applications using airborne hyperspectral and HICO data are presented. #### **Recommended Reading** Corson, M. and C. O. Davis, 2011, "The Hyperspectral Imager for the Coastal Ocean (HICO) provides a new view of the Coastal Ocean from the International Space Station," AGU EOS, V. 92(19): 161-162. Davis, C. O., J. Bowles, R. A. leathers, D. Korwan, T. V. Downes, W. A. Snyder, W. J. Rhea, W. Chen, J. Fisher, W. P. Bissett and R. A. Reisse, 2002, Ocean PHILLS hyperspectral imager: design, characterization, and calibration, Optics Express, 10(4): 210-221. Davis, C. O., K. L. Carder, B-C Gao, Z. P Lee and W. P. Bissett, 2006, The Development of Imaging Spectrometry of the Coastal Ocean, IEEE Proceedings of the International Geoscience and Remote Sensing Symposium, V. 4: 1982-1985. Gao, B-C, M. J. Montes, C. O. Davis, and A. F.H. Goetz, 2009, Atmospheric correction algorithms for hyperspectral remote sensing data of land and ocean, Remote Sensing of Environment, doi:10.1016/j.rse.2007.12.015 Lee, Z-P, B. Casey, R. Arnone, A. Weidemann1, R. Parsons, M. J. Montes, Bo-Cai Gao, W. Goode, C. O. Davis, J. Dye, 2007, Water and bottom properties of a coastal environment derived from Hyperion data measured from the EO-1 spacecraft platform, J. Appl. Remote Sensing, V. 1 (011502): 1-16. R. L. Lucke, M. Corson, N. R. McGlothlin, S. D. Butcher, D. L. Wood, D. R. Korwan, R.-R. Li, W. A. Snyder, C. O. Davis, and D. T. Chen, 2011, "The Hyperspectral Imager for the Coastal Ocean (HICO): Instrument Description and First Images," Applied Optics, V. 50 (11): 1501-1516 doi:10.1364/AO.50.001501 Mobley, C. D., L. K. Sundman, C. O. Davis, T. V. Downes, R. A. Leathers, M. J. Montes and J. H. Bowles, W. P. Bissett, D. D. R. Kohler, R. P. Reid, E. M. Louchard and A. Gleason, 2005, Interpretation of hyperspectral remote-sensing imagery via spectrum matching and look-up tables, Applied Optics, 44(17): 3576-3592. # <u>Menghua Wang - Atmospheric Correction of Ocean Color Remote Sensing</u> <u>Observations</u> NOAA/NESDIS Center for Satellite Applications and Research Camp Springs, MD 20746, USA This lecture will provide an overview of atmospheric correction approaches for remote sensing of water properties for open oceans and coastal waters. Beginning with definitions of some basic parameters for describing ocean and atmosphere properties, the radiative transfer equation (RTE) for ocean-atmosphere system will be introduced and discussed. Various methods for solving RTE, in particular, the successive-order-of-scattering method will be described. We examine various radiance contribution terms in atmospheric correction, i.e., Rayleigh scattering radiance, aerosol radiance (including Rayleigh-aerosol interaction), whitecap radiance, sun glint, and water-leaving radiance. Atmospheric correction algorithms using the near-infrared (NIR) and shortwave infrared (SWIR) bands will be described in detail, as well as some examples from MODIS-Aqua measurements. The standard NIR atmospheric correction algorithm has been used for deriving accurate ocean color products over open oceans for various satellite ocean color sensors, e.g., OCTS, SeaWiFS, MODIS, MERIS, VIIRS, etc. Some specific issues of atmospheric correction algorithm over coastal and inland waters, e.g., highly turbid and complex waters, strongly absorbing aerosols, will also be discussed. The outline of the lectures is provided below. #### *Outline of the Lectures* - 1. Introduction - Brief history - Basic concept of ocean color measurements - Why need atmospheric correction - 2. Radiometry and optical properties - Basic radiometric quantities - Apparent optical properties (AOPs) - Inherent optical properties (IOPs) - 3. Optical properties of the atmosphere - Molecular absorption and scattering - Aerosol properties and models - Non- and weakly absorbing aerosols - Strongly absorbing aerosols (dust, smoke, etc.) - 4. Radiative Transfer - Radiative Transfer Equation (RTE) - Various approaches for solving RTE - Successive-order-of-scattering method - Single-scattering approximation - Sea surface effects - Atmospheric diffuse transmittance - Normalized water-leaving radiance - 5. Atmospheric Correction - Define reflectance and examine the various terms - Single-scattering approximation - Aerosol multiple-scattering effects - Open ocean cases: using NIR bands for atmospheric correction - Coastal and inland waters - > Brief overviews of various approaches - The SWIR-based atmospheric correction - Examples from MODIS-Aqua measurements - 6. Addressing the strongly-absorbing aerosol issue - The issue of the strongly-absorbing aerosols - Some approaches for dealing with absorbing aerosols - Examples of atmospheric correction for dust aerosols using MODIS-Aqua and #### **CALIPSO** data - 7. Requirements for future ocean color satellite sensors - 8. Summary #### **Some Useful References** Chandrasekhar, S. (1950), "Radiative Transfer," Oxford University Press, Oxford, 393 pp. Van de Hulst, H. C. (1980), "Multiple Light Scattering," Academic Press, New York, 739pp. Gordon, H. R. and A. Morel (1983), "Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery: A Review," Springer-Verlag, New York, 114pp. Gordon, H. R. and M. Wang (1994), "Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: A preliminary algorithm," *Appl. Opt.*, **33**, 443-452. Gordon, H. R. (1997), "Atmospheric correction of ocean color imagery in the Earth Observing System era," *J. Geophys. Res.*, **102**, 17081-17106. Wang, M. (2007), "Remote sensing of the ocean contributions from ultraviolet to near-infrared using the shortwave infrared bands: simulations," *Appl. Opt.*, **46**, 1535-1547. IOCCG (2010), "Atmospheric Correction for Remotely-Sensed Ocean-Color Products," Wang, M. (ed.), Reports of International Ocean-Color Coordinating Group, No. 10, IOCCG, Dartmouth, Canada. (http://www.ioccg.org/reports_ioccg.html) ## Jorge L.
Sarmiento - Ocean Colour and Climate Change Atmospheric and Oceanic Sciences Program Princeton University, Princeton, NJ 08540 jls@princeton.edu # Lecture 1: Model predictions of the response of ocean physical and biological processes to climate change I will summarize the main physical changes predicted by global warming models for the rest of this century and how we expect those changes to impact both lower trophic and upper trophic level processes in the ocean. I will discuss empirical as well as ecosystem model approaches for predicting the biological response and examine how the model simulations compare with estimates of chlorophyll and primary production based on ocean color observations. A major emphasis of the discussion will be on interannual as well as intra and inter-model variability. #### References: Sarmiento, J. et al. (2004), Response of ocean ecosystems to climate warming, *Global Biogeochem. Cycles*, *18*(GB3003), doi:1029/2003GB002134. Steinacher, M., F. Joos, T. Frölicher, L. Bopp, P. Cadule, S. Doney, M. Gehlen, B. Schneider, and J. Segschneider (2010), Projected 21st century decrease in marine productivity: a multi-model analysis, *Biogeosciences*, *7*, 979–1005. #### Lecture 2: Detection of trends in ocean color data I will briefly review recent studies attempting to use ocean color products to detect climate trends then examine how variability such as that identified by the model simulations affects our ability to detect long-term trends in the observations. #### References: Henson, S., J. Sarmiento, J. Dunne, L. Bopp, I. Lima, S. Doney, J. John, and C. Beaulieu (2010), Detection of anthropogenic climate change in satellite records of ocean chlorophyll and productivity, *Biogeosciences*, *7*, 621–640. ## **Kevin Ruddick - Ocean Colour Remote Sensing in turbid coastal waters** Royal Belgian Institute of Natural Sciences (RBINS), B-1200 Brussels, Belgium The use of ocean colour remote sensing data has increased dramatically over the last ten years, particularly for coastal waters where impacts between the marine environment and human activities may be particularly intense. Many of these coastal waters will be turbid because of high concentrations of suspended particulate matter caused by a variety of processes including high biomass algal blooms, sediment resuspension by wind/tide, river plumes, etc. Within these lectures on "Ocean Colour Remote Sensing in turbid coastal waters" the specific challenges and opportunities presented by turbid waters will be presented, where "turbid" is understood here to indicate waters with high particulate scattering. There are two major additional difficulties for ocean colour remote sensing in turbid coastal waters. Firstly, atmospheric correction is more difficult in turbid waters because it is not possible to assume zero near infrared marine reflectance ("black pixel assumption"), thus complicating the decomposition of top of atmosphere measurements into atmospheric and marine reflectances. Secondly, the optical properties of non-algae particles, such as mineral particles from bottom resuspension or from river discharges, need to be considered in addition to algal particles. If the absorption and scattering of non-algae particles is significant compared to that of algal particles it may become difficult or even impossible to distinguish the optical properties of the algal particles. In such conditions the estimation of chlorophyll a may become severely degraded or suffer from a detection limit problem. In turbid waters both the atmospheric correction and the chlorophyll retrieval problems are highly dependent on the technical specification of the remote sensors being used, and in particular on the spectral band set. These two key issues will be explained in detail, via lectures and via simple computer-based exercises. The algorithmic approaches that can be used to deal with these problems will be outlined, based on the current state of the art and with reference to the capabilities of past, current and future ocean colour sensors such as SeaWiFS, MODIS, MERIS, GOCI and OLCI. In addition to aspects of chlorophyll retrieval in turbid coastal waters, other relevant parameters will be discussed, including diffuse attenuation coefficient, euphotic depth, suspended particulate matter, etc. The links with applications in marine science and coastal zone management will be described. #### **Requirements for the lectures** - A basic knowledge of the definitions of optical properties (scattering, absorption, attenuation) from other lectures from this IOCCG summer school, particularly those of Mark Dowell, Zhongping Lee and Curtis Mobley. - An ability to use basic functions of Excel. #### Suitable background reading IOCCG report #3 on "Remote Sensing of Ocean Colour in Coastal, and Other Optically-Complex, Waters", available from http://www.ioccg.org/report3.pdf ## Rick Stumpf - Harmful Algal Blooms: The Contrast with Other Algal Blooms NOAA National Ocean Service, Silver Spring, MD 20910, USA - 1. What are harmful algal blooms (HABs)? - Contrast of HABs to functional groups - What must be known to detect HABs - Environment - Simple physiology and ecology - Ecological conditions - "Operational" vs research considerations - Work exercise: A strategy to respond to reports of a HAB #### 2. Methods - Chlorophyll - Change detection - Analytical algorithms - Spectral shape (MCI, FLH, CI) - Other algorithms (brightness, empirical, etc.) - Ancillary data (SST, winds) - Ensemble methods - Work exercise: Case Study (to be provided) _ #### 3. Using satellite - Limitations defined by objective, method, species, environment - Satellite strengths and weakness - Algorithm failures - Atmospheric correction challenges - Work exercise: identify best method for a case study (to be provided) #### 4. Validation - Quantitative data vs qualitative data - False positives and false negatives - Field observations (ocean color, cells, toxins, impacts) - Work exercise: sampling strategy #### 5. Applications - Advisories - Forecasts - "Event response" (dead marine mammals, fish kills, bird kills, sickness) - Discussion of case studies ## **Suggested Reading** J. GOWER, S. KING, G. BORSTAD and L. BROWN (2005). Detection of intense plankton blooms using the 709 nm band of the MERIS imaging spectrometer International Journal of Remote Sensing 26(9): 2005–2012 Stumpf, R.P. and M.C. Tomlinson (2005) Remote sensing of harmful algal blooms. In: Miller, R.L., C.E. Del Castillo, and B.A. McKee, eds. *Remote Sensing of Coastal Aquatic Environments*. Springer, AH Dordrecht, The Netherlands, chapter 12, pp. 277-296. Stumpf, R.P. (2006) Forecasting Harmful Algal Blooms: The Roles of Optical Oceanography and Remote Sensing. Material presented at Ocean Optics XVIII. Wynne, T. T., Stumpf, R. P., Tomlinson, M. C., and Dyble, J. (2010). Characterizing a cyanobacterial bloom in western Lake Erie using satellite imagery and meteorological data. Limnol. Oceanogr., 55(5), 2025–2036 ## Marcel Babin - Ocean Colour Remote Sensing at High Latitudes Excellence Research Chair in Remote Sensing of Canada'sNew Arctic Frontier Université Laval, Québec, QC, Canada, G1V 0A6 Ocean colour remote sensing has often been used to study polar seas, especially in Antarctica where the optical properties of the upper ocean are not as complex as they are in the Arctic (Comiso et al., 1990, Comiso et al., 1993, Sullivan et al., 1993, Arrigo et al., 1998, Stramski et al., 1999, Arrigo et al., 2008b). It was shown based on OC data that primary production in Antarctic waters has changed little over the last 14 years (Arrigo et al., 2008b). In contrast, the few studies that have been conducted to date in the Arctic Ocean suggest that pan-Arctic primary production, as well as photooxidation of coloured dissolved organic matter have been increasing (Belanger et al., 2006, Pabi et al., 2008, Arrigo et al., 2008a) as a consequence of receding perennial ice. The annual maximum phytoplankton biomass is now reached earlier in several Arctic seas (Kahru et al., 2010). As the extent of the seasonal ice zone increases (difference between the annual maximum and minimum extents), ice-edge blooms may play a heightened role (Perrette et al., 2011). The on-going changes within the context of accelerating climate change necessitate a vastly improved understanding of the polar ecosystems based on an intensive observation program. The use of ocean colour remote sensing in polar regions is, however, impeded by a number of difficulties and intrinsic limitations including: - The prevailing low solar elevations. At high latitudes, the Sun zenith angle is often larger than the maximum (generally 70°) for which atmospheric correction algorithms have been developed based on plane-parallel radiative transfer calculations. Consequently, at high latitudes, a large fraction of the ocean surface is undocumented for a large part of the year even though primary production may be significant. - ➤ The impact of ice on remotely sensed reflectance. Belanger et al (2007) and Wang & Shi (2009), used radiative transfer simulations to examine the effects of the sea ice adjacency and sub-pixel ice contamination on retrieved seawater reflectance and level-2 ocean products. They found significant impacts within the first several kilometres from the ice-edge and for concentrations of sub-pixel ice floes exceeding a few percent. - > The deep chlorophyll maximum (DCM). A DCM is very often observed both in the Antarctic and Arctic Oceans. In the Arctic Ocean, the freeze-thaw cycle of sea ice and the large export of freshwater to the ocean by large Arctic rivers create pronounced haline stratification within the surface layer. In post-bloom conditions, a deep-chlorophyll maximum is associated with such vertical stratification. - Contrary to the DCM observed at lower latitudes (Cullen, 1982), the Arctic DCM often corresponds to a
maximum in particulate carbon and primary production (Martin et al., 2010). The statistical relationships between surface chlorophyll and chlorophyll concentration at depth developed for lower latitudes (Morel & Berthon, 1989) are most probably not valid for the polar seas (Martin et al., 2010). - ➤ Ignoring the vertical structure of the chlorophyll profile in the Arctic Ocean leads to significant errors in the estimation of the areal primary production (Pabi et al., 2008, Hill & Zimmerman, 2010). - ➤ The peculiar phytoplankton photosynthetic parameters. The low irradiance and seawater temperature prevailing in polar seas are associated with unique biooptical and photosynthetic parameters characteristic of extreme environments (Rey, 1991) that must be accounted for in primary production models. To date, only a few studies have attempted to do so in the Arctic Ocean (Arrigo et al., 2008b). - ➤ The optical complexity of seawater, especially over the Arctic shelves. Because of the important freshwater inputs, the Arctic continental shelves, which occupy 50% of the area, are characterized by high concentrations of CDOM (Matsuoka et al., 2007, Belanger et al., 2008). Also, as a consequence of photoacclimation to low irradiances, phytoplankton cells often contain large amounts of pigments. The chlorophyll-specific absorption coefficient is therefore particularly low due to pronounced pigment packaging (Cota et al., 2003, Wang et al., 2005). Because of these optical peculiarities, standard ocean colour algorithms do not work in the Arctic Ocean (Cota et al., 2004, Matsuoka et al., 2007). - ➤ The persistence of clouds and fog. High latitudes are known to present a heavy cloud cover. In addition, as soon as sea ice melts and opens waters come in direct contact with the atmosphere, fog develops near the sea surface. These features limit the usage of ocean colour data. This lecture will cover all of the topics mentioned above and will be organized into two parts (90' each) as detailed below: #### 1. Ocean colour remote sensing in polar seas - Ocean, sea ice and atmosphere in Arctic and Antarctic: relevant features - Seawater optical properties - > Retrieval of ocean properties from ocean colour: - Atmospheric corrections - Contamination of the signal by sea ice - Retrieval of IOPs and AOPs, and biogeochemically relevant variables - > Availability of data as favoured by polar orbits and limited by elevated #### Cloudiness ## 2. Primary production estimates from OC in polar seas - General features of Arctic and Antarctic Oceans related to PP (phytoplankton species, annual cycle of PP, nutrients, DCM) - > PP models and their validation - Results from PP models #### References Arrigo KR, Van Dijken G, Pabi S, 2008a. Impact of a shrinking Arctic ice cover on marine primary production. *Geophysical Research Letters* **35**. Arrigo KR, Van Dijken GL, Bushinsky S, 2008b. Primary production in the Southern Ocean, 1997 2006. *Journal of Geophysical ResearchOceans* **113**. Arrigo KR, Worthen D, Schnell A, Lizotte MP, 1998. Primary production in Southern Ocean waters. *Journal of Geophysical ResearchOceans* **103**, 15587-600. Belanger S, Babin M, Larouche P, 2008. An empirical ocean color algorithm for estimating the contribution of chromophoric dissolved organic matter to total light absorption in optically complex waters. *Journal of Geophysical ResearchOceans* **113**. Belanger S, Ehn JK, Babin M, 2007. Impact of sea ice on the retrieval of water-leaving reflectance, chlorophyll a concentration and inherent optical properties from satellite ocean color data. *Remote Sensing of Environment* **111**, 51-68. Belanger S, Xie HX, Krotkov N, Larouche P, Vincent WF, Babin M, 2006. Photomineralization of terrigenous dissolved organic matter in Arctic coastal waters from 1979 to 2003: Interannual variability and implications of climate change. *Global Biogeochemical Cycles* **20**. Comiso JC, Maynard NG, Smith WO, Sullivan CW, 1990. Satellite Ocean Color Studies of Antarctic Ice Edges in Summer and Autumn. *Journal of Geophysical ResearchOceans* **95**, 9481-96. Comiso JC, Mcclain CR, Sullivan CW, Ryan JP, Leonard CL, 1993. Coastal Zone Color Scanner Pigment Concentrations in the Southern-Ocean and Relationships to Geophysical Surface-Features. *Journal of Geophysical ResearchOceans* **98**, 2419-51. Cota GF, Harrison WG, Platt T, Sathyendranath S, Stuart V, 2003. Bio-optical properties of the Labrador Sea. *Journal of Geophysical ResearchOceans* **108**. Cota GF, Wang H, Comiso JC, 2004. Transformation of global satellite chlorophyll retrievals with a regionally tuned algorithm. *Remote Sensing of Environment* **90**, 373-7. Cullen JJ, 1982. The Deep Chlorophyll Maximum - Comparing Vertical Profiles of Chlorophyll-A. *Canadian Journal of Fisheries and Aquatic Sciences* **39**, 791-803. Hill VJ, Zimmerman RC, 2010. Estimates of primary production by remote sensing in the Arctic Ocean: Assessment of accuracy with passive and active sensors. *DeepSea Research Part IOceanographic Research Papers* **57**, 1243-54. Kahru M, Brotas M, Manzano-Sarabia M, Mitchell BG, 2010. Are phytoplankton blooms occurring earlier in theArctic? *Global change biology* doi: 10.111/j.13652486.2010.02312.x. Martin J, Tremblay JE, Gagnon J, et al., 2010. Prevalence, structure and properties of subsurface chlorophyll maxima in Canadian Arctic waters. *Marine EcologyProgress Series* **412**, 69-84. Matsuoka A, Huot Y, Shimada K, Saitoh SI, Babin M, 2007. Bio-optical characteristics of the western Arctic Ocean: implications for ocean color algorithms. *Canadian Journal of Remote Sensing* **33**, 503-18. Morel A, Berthon JF, 1989. Surface Pigments, Algal Biomass Profiles, and Potential Production of the Euphotic Layer - Relationships Reinvestigated in View of Remote-Sensing Applications. *Limnology and Oceanography* **34**, 1545-62. Pabi S, Van Dijken GL, Arrigo KR, 2008. Primary production in the Arctic Ocean, 1998-2006. *Journal of Geophysical ResearchOceans* **113**. Perrette M, Yool A, Quartly GD, Popova EE, 2011. Near-ubiquity of ice-edge blooms in the Arctic. *Biogeosciences* **8**, 515-24. Rey F, 1991. Photosynthesis-Irradiance Relationships in Natural Phytoplankton Populations of the Barents Sea. *Polar Research* **10**, 105-16. Stramski D, Reynolds RA, Kahru M, Mitchell BG, 1999. Estimation of particulate organic carbon in the ocean from satellite remote sensing. *Science* **285**, 239-42. Sullivan CW, Arrigo KR, Mcclain CR, Comiso JC, Firestone J, 1993. Distributions of Phytoplankton Blooms in the Southern-Ocean. *Science* **262**, 1832-7. Wang J, Cota GF, Ruble DA, 2005. Absorption and backscattering in the Beaufort and Chukchi Seas. *Journal of Geophysical ResearchOceans* **110**. Wang MH, Shi W, 2009. Detection of Ice and Mixed Ice-Water Pixels for MODIS Ocean Color Data Processing. *Ieee Transactions on Geoscience and Remote Sensing* **47**, 2510-8. ## <u>Yannick Huot - Satellite-Detected Fluorescence</u> University of Sherbrooke, Québec J1K 2R1 Canada This class will focus on retrieving information from the quantum yield of Sun-induced fluorescence using remote sensing. After reviewing the basic theory behind fluorescence emission in the cell and within the water column, we will examine the recent algorithms proposed to retrieve the quantum yield in open ocean waters. Finally, we will examine different proposed interpretations of the variability in the quantum in the ocean that were developed both from in situ measurements and from remote sensing. #### Suggested reading Behrenfeld, M J, T K Westberry, E S Boss, R T O'Malley, D A Siegel, J D Wiggert, B A Franz, *and others*. "Satellite-detected Fluorescence Reveals Global Physiology of Ocean Phytoplankton." *Biogeosciences* 6 (2009): 779-794 Huot, Yannick, and Marcel Babin. "Overview of Fluorescence Protocols: Theory, Basic Concepts, and Practice." In *Chlorophyll a Fluorescence in Aquatic Sciences: Methods and Applications*. Dordrecht: Springer Netherlands, 2010 Morrison, J R, and D S Goodwin. "Phytoplankton Photocompensation From Space-based Fluorescence Measurements." *Geophysical Research Letters* 37, no. 6 (2010): doi:10.1029/2009GL041799