Atmospheric Correction of Ocean Color RS Observations

Menghua Wang
NOAA/NESDIS/STAR
E/RA3, Room 3228, 5830 University Research Ct.
College Park, MD 20740, USA

IOCCG Summer Lecture Series, Villefranche-sur-Mer, France
July 21-August 2, 2014

Acknowledgements: I thank for satellite data from various missions, e.g., SeaWiFS, MODIS, and VIIRS, etc., in situ data from SeaBASS (from various PIs) and some other databases. Some slides are from Howard Gordon. I thank for various contributions from my postdocs, research associates, and colleagues.
Lecture Outlines (1)

1. Introduction
   - Brief history
   - Basic concept of ocean color measurements
   - Why need atmospheric correction

2. Radiometry and optical properties
   - Basic radiometric quantities
   - Apparent optical properties (AOPs)
   - Inherent optical properties (IOPs)

3. Optical properties of the atmosphere
   - Molecular absorption and scattering
   - Aerosol properties and models
     - Non- and weakly absorbing aerosols
     - Strongly absorbing aerosols (dust, smoke, etc.)

4. Radiative Transfer
   - Radiative Transfer Equation (RTE)
   - Successive-order-of-scattering method
   - Single-scattering approximation
5. Atmospheric Correction
   - Define reflectance and examine the various terms
   - Sea surface effects
   - Atmospheric diffuse transmittance
   - Normalized water-leaving radiance
   - Single-scattering approximation
   - Aerosol multiple-scattering effects
   - Open ocean cases: using NIR bands for atmospheric correction
   - Coastal and inland waters
     - Brief overviews of various approaches
     - The SWIR-based atmospheric correction
   - Examples from MODIS-Aqua, VIIRS, and GOCI measurements

6. Addressing the strongly-absorbing aerosol issue
   - The issue of the strongly-absorbing aerosols
   - Some approaches for dealing with absorbing aerosols
   - Examples of atmospheric correction for dust aerosols using MODIS-Aqua and CALIPSO data

7. Requirements for future ocean color satellite sensors

8. Some recent research results

9. Summary
Some Useful References

IOCCG Report #10 at http://www.ioccg.org/reports_ioccg.html
“Atmospheric Correction for Remotely-Sensed Ocean Colour Products”.
Most reference citations from my presentation can be found from the report.

Introduction

1. Introduction
   - Brief history
   - Basic concept of ocean color measurements
   - Why need atmospheric correction
Color photographs of the oceans were obtained from spacecraft (Apollo, etc., 1960’s).

Clarke et al. (1970) showed the systematic measurements of radiance spectra of sea (ocean color) from aircraft, demonstrated the possibility of detecting the chlorophyll concentration within the ocean upper layers. They also showed atmospheric effects on the measured signals.

Tyler & Smith (1970) performed field measurements of upward & downward irradiance spectra in different water bodies. Thereafter, there were many similar in situ water optical measurements.

Interpretation of in situ reflectance measurements was given in the frame of radiative transfer by Gordon et al. (1975) and also in terms of optically-significant water substances by Morel and Prieur (1977) and Smith and Baker (1978).

Gordon (1978; 1980) developed a single-scattering atmospheric correction algorithm for processing the NASA CZCS ocean color data, demonstrating the feasibility of satellite ocean color remote sensing.

Advanced atmospheric correction algorithm (Gordon and Wang, 1994) has been developed for various more sophisticated ocean color satellite sensors, e.g., SeaWiFS, OCTS, MODIS, MERIS, VIIRS, etc., following the successful CZCS proof of concept mission.

In recent years, atmospheric correction effort has been on dealing with more complex water properties in coastal and inland waters, as well as strongly-absorbing aerosols.
Satellite Ocean Color Measurements

Satellite ocean color remote sensing is possible because:

- Ocean color (spectral radiance/reflectance) data—water-leaving radiance/reflectance spectra—can be related to water properties, e.g., chlorophyll-a concentration, CDOM, total suspended matter, water absorption/scattering (IOPs), etc. In other words, there exist various relationships between water optical property and water biological / biogeochemical et al. properties.

- It is possible to carry out **atmospheric correction** for deriving accurate water radiance/reflectance spectra data from satellite measurements.
Ocean Color Spectra
**Satellite-Measured Reflectance (Radiance)**

\[
\rho_t(\lambda) = \underbrace{\rho_r(\lambda)}_{\text{Rayleigh}} + \underbrace{\rho_A(\lambda)}_{\text{Aerosols}} + \underbrace{t(\lambda)t_0(\lambda)[\rho_w(\lambda)]_N}_{\text{Transmittance Ocean}}
\]

\[
\rho(\lambda) = \pi L(\lambda)/\mu_0 F_0(\lambda)
\]

\[
\rho_{\text{path}}(\lambda) = \rho_r(\lambda) + \rho_A(\lambda)
\]

\[
\rho_a(\lambda) + \rho_{ra}(\lambda)
\]
Normalized water-leaving radiance:

$$\left[ L_w(\lambda) \right]_N, nL_w(\lambda) \quad \text{mW cm}^{-2} \text{µm}^{-1} \text{str}^{-1}$$

Normalized water-leaving reflectance:

$$\left[ \rho_w(\lambda) \right]_N, \rho_{wN}(\lambda) \quad \text{unitless}$$

Remote sensing reflectance:

$$R_{rs}(\lambda) = \rho_{wN}(\lambda) / \pi \quad \text{str}^{-1}$$
Ocean Color Remote Sensing

Atmospheric Correction (removing >90% sensor-measured signals)
Calibration (0.5% error in TOA >>> 5% in surface)

From H. Gordon
Ocean Reflectance Contribution: Case-1 Waters


Menghua Wang, IOCCG Lecture Series 2014--Atmospheric Correction
Ocean Contributions:
Case-1 Waters

Case-1 Water: Gordon et al. (1988)

Ocean Contributions:
Case-2 Waters

Examples of Case-2 Water

Menghua Wang, IOCCG Lecture Series 2014--Atmospheric Correction
Satellite Sensor Measured TOA Reflectance Spectra

M80 model, $\tau_a(865) = 0.1$

$\theta_0 = 60^\circ$, $\theta = 45^\circ$, $\Delta\phi = 90^\circ$
The TOA Ocean Contributions

M80 model, $\tau_a(865) = 0.1$

$\theta_0 = 60^\circ$, $\theta = 45^\circ$, $\Delta\phi = 90^\circ$
Ocean TOA Radiance Contributions for Case-1 Waters

(b) M80 model, $\tau_a(865) = 0.1$

$\theta_0 = 60^\circ$, $\theta = 45^\circ$, $\Delta \phi = 90^\circ$

$\rho_r(\lambda)$

$\rho_t(\lambda)$

Ratio $\rho_{\text{path}}(\lambda)/\rho_t(\lambda)$

Ratio $\rho_r(\lambda)/\rho_t(\lambda)$

IOCCG Report-10
For a typical **Case-1 (open ocean)** water: Satellite-measured water-leaving reflectance contributions at the TOA are 6.4%, 9.8%, 12.1%, 10.8%, 5.5%, and 1.3% at wavelengths of 412, 443, 490, 510, 555, and 670 nm.
Ocean TOA Radiance Contributions for Sediment-type Case-2 Waters

M80 model, \( \tau_a(865) = 0.1 \)
\( \theta_0 = 60^\circ, \theta = 45^\circ, \Delta\phi = 90^\circ \)

\( \rho_r(\lambda) \) and \( \rho_t(\lambda) \) reflectance ratio values

\( \rho_{\text{path}}(\lambda)/\rho_t(\lambda) \) ratio

\( \rho_r(\lambda)/\rho_t(\lambda) \) ratio

\( \sim 90\% \)
For a typical sediment-dominated water:
Satellite-Measured water-leaving reflectance contributions at the TOA are 5.8%, 11.2%, 26.3%, 30.6%, 39.0%, 16.4%, 3.7%, and 2.4% at wavelengths of 412, 443, 490, 510, 555, 670, 765, and 865 nm.
Ocean TOA Radiance Contributions for Yellow Substance-type Case-2 Waters

M80 model, $\tau_a(865) = 0.1$

$\theta_0 = 60^\circ$, $\theta = 45^\circ$, $\Delta \phi = 90^\circ$

Signals are very small
For a yellow-substance-dominated (CDOM) water: Satellite-Measured water-leaving reflectance contributions at the TOA are 0.2%, 0.4%, 1.2%, 1.7%, 3.6%, 5.3%, 1.2%, and 1.0% at wavelengths of 412, 443, 490, 510, 555, 670, 765, and 865 nm.

It is very difficult to do atmospheric correction accurately at the blue bands!
At satellite altitude
~90% of sensor-measured signal over ocean
comes from the atmosphere & surface!

Factor of 1:10 from TOA to the surface

- It is crucial to have accurate atmospheric correction and sensor calibrations.
- 0.5% error in atmospheric correction or calibration corresponds to possible of ~5% error in the derived ocean water-leaving radiance.
- We need ~0.1% sensor calibration accuracy.
Ocean Color Remote Sensing: Derive the ocean water-leaving radiance spectra by accurately removing the atmospheric and surface effects.

Ocean properties: e.g., chlorophyll-a concentration, diffuse attenuation coefficient at 490 nm, TSM, etc., can be derived from the ocean water-leaving radiance spectra.
References


Radiometry and Optical Properties

2. Radiometry and optical properties
   - Basic radiometric quantities
   - Apparent optical properties (AOPs)
   - Inherent optical properties (IOPs)
Apparent Optical Properties

Radiant Power:

\[ P(\lambda) = N \frac{hc}{\lambda} / t = \text{Energy} / t \quad N = \# \text{ of photons} \]

Definition of Radiance \( L \):

\[ L(\lambda) = \frac{\Delta^2 P(\lambda)}{\cos \theta \Delta \Omega \Delta A} \]

Radiance is Apparent Optical Property (AOP). Ocean color satellite sensors measure Radiance!
Inherent Optical Properties (IOPs) (1)

Absorption coefficient $a$:

$$a(\lambda) = \frac{\Delta P(\lambda)}{P(\lambda) \Delta l}$$

Scattering coefficient $b$:

$$b(\lambda) = \frac{\Delta P(\lambda)}{P(\lambda) \Delta l}$$

Extinction coefficient $c$:

$$c(\lambda) = \frac{\Delta P(\lambda)}{P(\lambda) \Delta l} = a(\lambda) + b(\lambda)$$

Menghua Wang, IOCCG Lecture Series 2014--Atmospheric Correction
Inherent Optical Properties (IOPs) (2)

Volume Scattering Function:

\[ \beta(\Theta) = \frac{\Delta^2 P(\lambda)}{P(\lambda) \Delta\Omega \Delta l} \]

\[ \int_{4\pi} \beta(\Theta) d\Omega = \frac{\Delta P(\lambda)}{P(\lambda) \Delta l} \equiv b(\lambda) \]

Scattering phase function \( P \):

\[ P(\Theta) = \frac{\beta(\Theta)}{b} \]

Definition of Scattering Angle

Menghua Wang, IOCCG Lecture Series 2014--Atmospheric Correction
**Single-Scattering Albedo**

The **single scattering albedo** is a dimensionless parameter which represents the percentage of photons being scattered in the single scattering case:

\[
\omega_0(\lambda) = \frac{b(\lambda)}{c(\lambda)}
\]

**Optical Thickness** (e.g., aerosol optical thickness (AOT), Rayleigh optical thickness, cloud optical thickness, etc.)

\[
\tau(\lambda) = \int_{0}^{Z} c(z', \lambda) \, dz'
\]
3. Optical properties of the atmosphere
   ▪ Molecular absorption and scattering
   ▪ Aerosol properties and models
     — Non- and weakly absorbing aerosols
     — Strongly absorbing aerosols (dust, smoke, etc.)
Molecular (Rayleigh) Scattering

- The scattering of air molecules is purely electric dipole in character.
- The scattering phase function is symmetry, i.e., equal amounts of radiance are scattered into the forward and backward directions.
- The amount of scattered radiance varies nearly as the inverse fourth power of wavelength (blue sky).
Molecular (Rayleigh) Scattering

Rayleigh Phase Function: \( P_r(\Theta) \propto 1 + \cos^2 \Theta \)

The Rayleigh optical thickness is (Hansen & Travis, 1974):

\[
\tau_r(\lambda, P_0) = 0.008569 \lambda^{-4} \left(1 + 0.0113 \lambda^{-2} + 0.00013 \lambda^{-4}\right)
\]

\( P_0 \) is the standard atmospheric pressure of 1013.25 hPa, and for a pressure \( P \),

\[
\tau_r(\lambda, P) = \tau_r(\lambda, P_0) \frac{P}{P_0}
\]
Rayleigh Scattering Radiance & Stokes Components

(a) Rayleigh Reflectance

- Wavelengths: 335–2533 nm
- $\theta_0 = 60^\circ$, $\theta = 20^\circ$, $\Delta \phi = 90^\circ$

(b) Rayleigh Stokes Vector (F0=1)

- Wavelengths: 335–2533 nm
- $\theta_0 = 60^\circ$, $\theta = 20^\circ$, $\Delta \phi = 90^\circ$

(c) Rayleigh optical thicknesses: 0.0002–0.75

- $\theta_0 = 60^\circ$, $\theta = 20^\circ$, $\Delta \phi = 90^\circ$

(d) Degree of Polarization (%)

- Wavelengths: 335–2533 nm
- $\theta_0 = 60^\circ$, $\theta = 20^\circ$, $\Delta \phi = 90^\circ$
Atmospheric Pressure Variation

Usually, it is within ~±3%
Aerosol Size Distributions

Size Distribution: \( dn(D) = \text{number/volume between } D \text{ and } D + dD \)

Total number: \( N = \int_0^\infty \frac{dn}{dD} dD \)

Haze C Models:

\[
\frac{dn}{dD} = \begin{cases} 
K, & D_0 < D < D_1 \\
K \left( \frac{D_1}{D} \right)^{\nu+1}, & D_1 < D < D_2 \\
0, & D > D_2
\end{cases}
\]

\[
\log\left( \frac{dn}{dD} \right) = \begin{cases} 
\log(K), & D_0 < D < D_1 \\
\log(K) + (\nu+1) \log\left( \frac{D_1}{D} \right), & D_1 < D < D_2 \\
0, & D > D_2
\end{cases}
\]

\[
\frac{\tau_a(\lambda)}{\tau_a(865)} \equiv \left( \frac{865}{\lambda} \right)^{(\nu-2)}
\]

\[
\left( \frac{\% (\lambda)}{\% (865)} \right)
\]

\[
\lambda (nm)
\]

Menghua Wang, IOCCG Lecture Series 2014--Atmospheric Correction
Shettle and Fenn Models:

\[
\frac{dn}{dD} = \frac{2}{\log_{10}(10)/2\pi} \cdot \frac{N_0}{D} \cdot \exp \left[ -\frac{1}{2} \left( \frac{\log_{10}(D/D_0)}{\sigma_1} \right)^2 \right]
\]

Shuttle and Fenn particle properties:

Small component:
- 70% water soluble
- 30% mineral

Large Component:
- Sea Salt

At 550 nm

<table>
<thead>
<tr>
<th>Component</th>
<th>Size</th>
<th>(m(\text{RH}=0))</th>
<th>(m(\text{RH}=98%))</th>
<th>(\alpha_4(\text{RH}=0))</th>
<th>(\alpha_4(\text{RH}=98%))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trop. (I)</td>
<td>Small</td>
<td>1.53-0.0066</td>
<td>1.37-0.00121</td>
<td>0.959</td>
<td>0.989</td>
</tr>
<tr>
<td>Oceanic (O)</td>
<td>Large</td>
<td>1.50</td>
<td>1.35</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

M: 99.0% T and 1% O by number
C: 99.5% T and 0.5% O by number
T: 100% T and 0% O by number

Shettle and Fenn (1979) Aerosol Models
The complex refractive index of aerosol particles is:

$$m = m_r - i m_i,$$

$m_r$ is the real refractive index, e.g., ~1.33 for water in the visible, and $m_i$ the index related to particle absorption.

- Aerosol particles can be characterized with particle size distribution and particle refractive index.
- Given the size distribution, refractive index of the individual particles, and assuming that the particles are spherical, aerosol optical properties can be computed using the Mie theory. These properties are:
  - The scattering phase function $P(\Theta)$
  - The single scattering albedo $\omega_0$
  - The extinction coefficient $c$
Aerosol Optical Thickness

Shettle and Fenn (1979)
Aerosol Models

Aerosol Phase Function
The Ångström Exponent $\alpha$ (particle size)

\[
\frac{\tau_a(\lambda)}{\tau_a(\lambda_0)} = \left( \frac{\lambda_0}{\lambda} \right)^{\alpha(\lambda, \lambda_0)}
\]

\[
\alpha(\lambda, \lambda_0) = \ln \left( \frac{\tau_a(\lambda)}{\tau_a(\lambda_0)} \right) / \ln \left( \frac{\lambda_0}{\lambda} \right)
\]

Small aerosol particle size has large $\alpha$ value, while large particle has small $\alpha$ value.
The Asymmetry Parameter $g$ (phase function)

$$g = \frac{1}{2} \int_{0}^{\pi} \cos \Theta P(\Theta) \sin \Theta d\Theta = \frac{1}{2} \int_{-1}^{1} \mu P(\mu) d\mu$$

The value of $g$ ranges between -1 for entirely backscattered light to +1 for entirely forward-scattered light. Generally, $g = 0$ indicates scattering direction evenly distributed between forward and backward directions, e.g., isotropic scattering.
Aerosol Models

Shettle and Fenn (1979) aerosol models used (12 models):

**Oceanic** with relative humidity (RH) of 99%

**Maritime** with RH of 50%, 70%, 90%, and 99%

**Coastal** with RH of 50%, 70%, 90%, and 99%

**Tropospheric** with RH of 50%, 90%, and 99%

Other models from **AERONET** measurements (Ahmad et al., 2010)
## Characteristics of the Aerosol Models

<table>
<thead>
<tr>
<th>Aerosol Model</th>
<th>Single Scattering Albedo $\omega_{a}(865)$</th>
<th>Asymmetry Parameter $g$</th>
<th>Ångström Exponent $\alpha(510, 865)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oceanic†</td>
<td>1.0</td>
<td>0.724-0.840</td>
<td>-0.087~ -0.016</td>
</tr>
<tr>
<td>Maritime†</td>
<td>0.982-0.999</td>
<td>0.690-0.824</td>
<td>0.09-0.50</td>
</tr>
<tr>
<td>Coastal ‡‡</td>
<td>0.976-0.998</td>
<td>0.682-0.814</td>
<td>0.23-0.76</td>
</tr>
<tr>
<td>Tropospheric†</td>
<td>0.930-0.993</td>
<td>0.603-0.769</td>
<td>1.19-1.53</td>
</tr>
<tr>
<td>Urban†</td>
<td>0.603-0.942</td>
<td>0.634-0.778</td>
<td>0.85-1.14</td>
</tr>
<tr>
<td>Dust ‡‡‡</td>
<td>0.836-0.994</td>
<td>0.662-0.763</td>
<td>0.29-0.36</td>
</tr>
</tbody>
</table>

† Shettle and Fenn (1979) aerosol models. ‡‡ Gordon and Wang (1994)

Strongly-absorbing aerosols
Radiative Transfer

4. Radiative Transfer
   - Radiative Transfer Equation (RTE)
   - Successive-order-of-scattering method
   - Single-scattering approximation
The Radiative Transfer Equation (RTE)

The RTE is simply an accounting for the changes in radiance along a path.

First, attenuation produces a loss:

\[ L + \Delta L = \frac{P + \Delta P}{\Delta A \Delta \Omega} = \frac{P(1 - c\Delta l)}{\Delta A \Delta \Omega} \]

\[ dL(\xi) \frac{dl}{dl} = -c L(\xi) \]
Second, scattering produces a gain:

\[
\frac{dL(\hat{\xi})}{dl}(\hat{\xi}) = \int_{\Omega'} \beta(\hat{\xi} \rightarrow \hat{\xi'}) L(\hat{\xi'}) d\Omega(\hat{\xi'})
\]

\(\hat{\xi} \rightarrow \hat{\xi'}\)
The RTE:

\[
\frac{dL(\hat{\xi})}{dl} = -cL(\hat{\xi}) + \int_{\Omega'} \beta(\hat{\xi}' \rightarrow \hat{\xi}) L(\hat{\xi}') d\Omega(\hat{\xi}')
\]

For the atmosphere-ocean system:

\[
\cos \theta \frac{dL(z, \theta, \phi)}{dz} = -c(z) L(z, \theta, \phi)
\]

\[
+ \int_{\Omega'} \beta(z, \theta', \phi' \rightarrow \theta, \phi) L(z, \theta', \phi') d\Omega'
\]
The RTE:
\[
\cos \theta \frac{dL(z, \theta, \phi)}{dz} = -c(z) L(z, \theta, \phi) + \int_{\Omega'} \beta(z, \theta', \phi' \rightarrow \theta, \phi) L(z, \theta', \phi') d\Omega'
\]

Can be written as:
\[
\cos \theta \frac{dL(z, \theta, \phi)}{c(z) dz} = -L(z, \theta, \phi) + \omega_0(z) \int_{\Omega'} P(z, \theta', \phi' \rightarrow \theta, \phi) L(z, \theta', \phi') d\Omega'
\]

\[
\cos \theta \frac{dL(\tau, \theta, \phi)}{d\tau} = -L(\tau, \theta, \phi) + \omega_0(\tau) \int_{\Omega'} P(\tau, \theta', \phi' \rightarrow \theta, \phi) L(\tau, \theta', \phi') d\Omega'
\]

where \( \tau = \int_0^Z c(z') dz' \) is the optical thickness
Successive-order-of-scattering method

Fourier Decomposition of the RTE


*Menghua Wang, IOCCG Lecture Series 2014--Atmospheric Correction*
Single-Scattering Approximation (1)

Atmosphere property:
Optical thickness $\tau$, \hspace{1cm} L \sim \tau
Single-scattering albedo $\omega_0$, \hspace{1cm} L \sim \omega_0
Phase function $P(\Theta)$, \hspace{1cm} L \sim P(\Theta)

\[ \rho_{as}(\lambda) = \frac{\omega_0(\lambda) \tau(\lambda)}{4 \cos \theta \cos \theta_0} \left[ P(\Theta_+,\lambda) + \left( r(\theta) + r(\theta_0) \right) P(\Theta_-,\lambda) \right] \]

\[ \propto \omega_0(\lambda) \tau(\lambda) P(\Theta_-,\lambda) \]

Fresnel-reflecting surface

Fresnel reflectivity of the surface

\[ \rho_{as}(\lambda) = \frac{\omega_0(\lambda) \tau(\lambda)}{4 \cos \theta \cos \theta_0} \left[ P(\Theta_-, \lambda) + (r(\theta) + r(\theta_0)) P(\Theta_+, \lambda) \right] \]

\[ \propto \omega_0(\lambda) \tau(\lambda) P(\Theta_-, \lambda) \]

**Aerosol reflectance (radiance)**

\[ \propto \omega_a(\lambda) \tau_a(\lambda) P_a(\Theta_-, \lambda) \]

For non- and weakly absorbing aerosols, aerosol reflectance:

\[ \propto \tau_a(\lambda) P_a(\Theta_-, \lambda) \]

AOT can be routinely measured, but NOT Phase Function
Aerosol Single-Scattering Epsilon

$$\varepsilon(\lambda, \lambda_0) = \frac{\rho_{as}(\lambda)}{\rho_{as}(\lambda_0)}$$

$$= \frac{\omega_a(\lambda) \tau_a(\lambda) [P_a(\Theta_-, \lambda) + (r(\theta) + r(\theta_0))P_a(\Theta_+, \lambda)]}{\omega_a(\lambda_0) \tau_a(\lambda_0) [P_a(\Theta_-, \lambda_0) + (r(\theta) + r(\theta_0))P_a(\Theta_+, \lambda_0)]}$$

Spectral variation of aerosol reflectance
# Characteristics of the Aerosol Models

<table>
<thead>
<tr>
<th>Aerosol Model</th>
<th>Single Scattering Albedo $\omega_a(865)$</th>
<th>Asymmetry Parameter $g$</th>
<th>Ångström Exponent $\alpha(510, 865)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oceanic$^+$</td>
<td>1.0</td>
<td>0.724-0.840</td>
<td>-0.087- -0.016</td>
</tr>
<tr>
<td>Maritime$^+$</td>
<td>0.982-0.999</td>
<td>0.690-0.824</td>
<td>0.09-0.50</td>
</tr>
<tr>
<td>Coastal$^{++}$</td>
<td>0.976-0.998</td>
<td>0.682-0.814</td>
<td>0.23-0.76</td>
</tr>
<tr>
<td>Tropospheric$^+$</td>
<td>0.930-0.993</td>
<td>0.603-0.769</td>
<td>1.19-1.53</td>
</tr>
<tr>
<td>Urban$^+$</td>
<td>0.603-0.942</td>
<td>0.634-0.778</td>
<td>0.85-1.14</td>
</tr>
<tr>
<td>Dust$^{+++}$</td>
<td>0.836-0.994</td>
<td>0.662-0.763</td>
<td>0.29-0.36</td>
</tr>
</tbody>
</table>


- **Strongly-absorbing aerosols**
- **Non- and weakly-absorbing aerosols**
Aerosol Single-Scattering Epsilon \((\lambda_0 = 865 \text{ nm})\)

\[ \varepsilon(\lambda, \lambda_0) \]

\(\lambda_0 = 865 \text{ nm}, \theta_0 = 60^\circ, \theta = 45^\circ, \Delta \phi = 90^\circ\)

Wavelength (nm)

Menghua Wang, IOCCG Lecture Series 2014--Atmospheric Correction
Epsilon and Aerosol Reflectance

\[ \varepsilon(\lambda, \lambda_0) = \frac{\rho_{as}(\lambda)}{\rho_{as}(\lambda_0)} \approx \exp \{ c(\lambda_0 - \lambda) \} \]

\( \varepsilon(\lambda, \lambda_0) \) can be computed from two bands (e.g., NIR bands) \( \rho_{as}(\lambda) \). Thus, \( \rho_{as}(\lambda) \) values in other wavelengths (e.g., visible bands) can be estimated:

\[ \rho_{as}(\lambda) = \varepsilon(\lambda, \lambda_0) \times \rho_{as}(\lambda_0) \]

Questions?

Radiance $L \sim ?$