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What is light?

“Every physicist thinks he knows
what a photon is. | spent my life
to find out what a photon is and |

still don’t know It”

- Albert Einsteln



“Physics should be made as
simple as possible, but no simpler”

- Albert Einstein



Electromagnetic wave:
the coupled E- and B- fields




Basic Laws of Electromagnetism

Force equations: How fields affect charges?
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experiences electric and magnetic fields: F o= gt + gV



Maxwell equations: How charges produce fields?

Electric fields are generated by:

 Electric charges

e Time-varying magnetic fields

Maagnetic fields are generated by:

« Charges in motion (electric currents)

e Time-varying electric fields



 From Maxwell’'s equations in differential form
we obtain in free space
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Poynting Vector

Energy transported by electromagnetic
wave per unit time per unit area

« Poynting vector at time instant t
— - _1. —) - R 9 N —
5(5)= - B(¥) B(t) = e, E(Y) =B (t)

 Time-average magnitude of s'(t) is
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In 1807, an English physicist Thomas Young asserted that light
has the properties of a wave in an experiment called Young’s
Interference Experiment. This Young’s interference experiment
showed that light beams (waves) passing through two slits
(double-slit) add together or cancel each other and then
interference fringes appear on the screen. This phenomenon
cannot be explained unless light is considered as a wave.

Thomas Young
(1773 - 1829)
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On a Heuristic Viewpoint Concerning the Production and
Transformation of Light, Annalen der Physik, 17 (6), 132—148 (1905).

One of four Einstein’s Annus Mirabilis (Miracle Year) papers published
in 1905.

Albert Einstein (1879 - 1955) E phﬂtﬂn — hv

Nobel Prize 1921
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Young'’s Interference Experiment or Double-slit Interference Experiment carried
out using technology to detect individual light particles to investigate whether
interference fringes appear even if the light is drastically weakened to the level
having only one particle. Results from the experiment confirmed that one photon
exhibited an interference fringe (Hamamatsu Photonics, 1981).
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Young'’s Interference Experiment
with a single photon (top)

Young'’s Interference Experiment
with a very large number of photons

(bottom)
http://photonterrace.net/en/photon/duality/

This experiment captured the dual nature of the photon by a special camera for the first time ever



Electromagnetic radiation: A mix of photon wavetrains
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The energy g of photon is related to its frequency f and corresponding

wavelength A :
g=hf=hc/x
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I"

where h = 6.626 x 1034 J s is Planck's constant and ¢ = 2.998 x 108 m st
IS the speed of photons (phase velocity) in free space.

The speed of photons (phase velocity) in wateris v, =c/n,,
where n,, is refractive index of water n, =c/v,,

The energy q,, of photon in water is:

q,=9g=hf=hv,/Ai, wherei,=1/n,



The Electromagnetic-Photon Spectrum
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The electromagnetic-photon spectrum
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Randomly polarized (unpolarized) light is a jumble
of random, rapidly changing E-fields
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Plane-Polarized or Linearly-Polarized Light

(Hecht 1998)



Right-circular light

(Hecht 1998)



Polarization by transmission
(polarizing filters)

Relationship Between Long-Chain Molecule Orentation
and the Orientation of the Polarization Axis
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Polarization by scattering

Unpolarized

Unpolarized

Linearly |
polarized

Partially
polarized




Polarization by Polarization by
scattering reflection




Reflection at the boundary between the media
of different densities (refractive index)

Vacuum

Christian Huygens
(1629 - 1695)

Medium

Wavefront geometry for reflection. The
reflected wavefront CD is formed of waves scattered by the
atoms on the surface from A to D. Just as the first wavelet
arrives at C from A, the atom at D emits, and the wavefront
along CD is completed.



Refraction
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Internal Reflection
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Dispersion

- -

Incident Angle - 8{i)

358358

Refracted Angle - 8(r)
Varies From
28.51° To 28.82°

{* White Light
i Monochromatic

Choose A Material (Rl)

Water 1.3330
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Diffraction
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The diffraction of light around a
penny and its ultimate interference
upon a screen produces a pattern which
could only be observed if light iz a wave.

Augustin-Jean Fresnel
(1788 - 1827)

The intensity of light behind the
barrier is not zero in the shadow
region due to diffraction (light wave

has a capability to “bend around
corners”)



Emission of Light

Thermal radiation

light emission is related to the temperature of
an object with all molecules, atoms, and
subatomic particles involved in thermal motion

Luminescence

light emission is related to the specific changes
In the energy levels of specific molecules



Planck Radiation Law

This law governs the intensity of radiation emitted by unit surface
area into a fixed direction (solid angle) from the blackbody as a
function of wavelength for a fixed temperature.

Decrease of A peak

with increase in
temperature

Visible Increase of intensity with

temperature and decrease
of peak wavelength with Max Planck (1858 - 1947)
temperature. Nobel Prize 1918
7000K
6000K

5000K ~2
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Intensity

500 1000 1500 2000 nm

Wavelength A (nm)
h = Planck’s constant = 6,626 *1073% [ x5

¢ = speed of light = 2.997925 + 10°m / sec

A=wavelength (m)
k = Boltzmann's constant = 1.381 = 1072 J/K

T = temperature (K)



Stefan-Boltzmann Law

The Stefan-Boltzmann law states that a blackbody
emits electromagnetic radiation with a total energy
flux E proportional to the fourth power of the Kelvin
temperature T of the object

E =0Tl

where OO (sigma) = 5.67 x 108 Wm-2 K4

Joseph Stefan Ludvig Boltzmann

(1835 - 1893) and | is the temperature in Kelvin (1844 - 1906)




Wien’s Displacement Law

Wien's displacement law states that dominant
wavelength at which a blackbody emits electromagnetic
radiation is inversely proportional to the Kelvin
temperature of the object

~ 0.0029 K m

f‘- - —
max
I

= wavelength of maximum emission of the object
(in meters)

""m.l X

T = temperature of the object (in kelvins)

For example

— The Sun, A, =500 nm > T = 5800 K
Wilhelm Wien (1864 - 1928)

Nobel Prize 1911 — Human body at 37 degrees Celsius or 310 Kelvin 2 A, =
9.35 um = 9350 nm




Ocean optics is concerned primarily
with the study of visible light, more
specifically the relatively narrow range
of electromagnetic spectrum from
near-UV through visible to near-IR
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Interaction of Light and Matter

Scattering (life of photon) — change of direction of propagation
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Spectrum of Solar Radiation (Earth)
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Solar spectral irradiance outside the Earths’s atmosphere
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Overlap of “window” in atmospheric transmittance with minimum
of water absorption in the visible band.
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Spectra of Solar
Irradiance
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Interaction of light and matter

Scattering - life of photon

Refractiofi—a

Absorption - death of photon



Energy levels
of molecule:
Mechanism of
light absorption

Electronic:
energy ~400 kJ/mol
A ~100 — 1000 nm

Vibrational:
energy ~4 — 40 kJ/mol
A~1—-20pum

Rotational:
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Relative absorption (percent)
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Absorption spectra of plant pigments
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Absorption mechanism
associated with water 0"
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Absorption (1/m)

Absorption spectrum of water molecules
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Absorption spectra of atmospheric molecules
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Scattering of light by inhomogeneity of the medium
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Electromagnetic radiation of an oscillating dipole:

Mechanism of light scattering
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Elastic and inelastic scattering
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Small and large
particle in the
electric field of the
electromagnetic
wave
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A single particle subdivided into oscillating dipoles
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The interference pattern produced by two slits
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Geometric ray tracing approach

T 4

Light rays

O Exterior Diffraction

1 External Reflection
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Small Particles (a)

e

Incident
beam

Angular patterns of s sl tan ona—tanh i -

length of light

scattered intensity Ousripion: symmaci

from particles of
different sizes

Large Particies (b)

Incident
beam

Size: approximately one—fourth the wavelength of light
Description: scattering concentrated in forward direction

Larger Particles (¢)

Incident
beam

.

Size: larger than the wavelength of light

Description: extreme concentration of scattering in forward direction;

development of maxima and minima of scattering at
wider angles



Molecular scattering as a function of light wavelength
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Scattering by a collection of particles
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Multiple light scattering by a collection of particles

Scattered light

Figure 1.5 Multiple scattering process involving first (P), second (Q), and third (R) order scattering
in the direction denoted by d.

(Liou 2002)



