Case Study 19

Determining Dynamic Biogeographic Regions using Remote Sensing Data

E. Santamaría-del-Ángel, A. González-Silvera, R. Millán-Núñez, M. E. Callejas-Jiménez, R. Cajal-Medrano

19.1 Background Information

One of the most important topics in natural resource management is the determination of biogeographic regions (BGR). Each BGR is the result of a particular combination of physical, chemical and biological factors and the variation of one of these factors can have different effects on each region. This characteristic trait makes biogeographic regionalization a basic tool of environmental modeling. Topics such as the carbon cycle and global climate change, and it effects on fisheries (IOCCG, 2008; 2009a) can be addressed using BGRs to bring together in situ data and data obtained from remote sensor observations (IOCCG, 2009b). Defining a BGR is simpler in terrestrial ecosystems than in marine environments because ecotypes such as forests, jungles and deserts can be used to define a BGR. The highly-dynamic nature of the marine environment makes defining BGRs a great challenge, which requires different approximations.

There are two basic approximations that can be used to define marine BGR. The first uses a large, in situ database (direct approximation) and the second uses data obtained from remote sensor observations (indirect approximation). Applying the direct approximation requires a database that is robust in both space and time. Such a database is generated by monitoring programs such as CalCOFI (California Cooperative Oceanic Fisheries Investigations) within the California Current systems. Millán-Núñez et al. (1997) surveyed the area using the CalCOFI database and determined six BGR. Not all areas are candidates for direct approximation, because of the high costs. For areas that do not have continuous monitoring stations, the only way to determine BGR is to use indirect approximation. The basic idea of this technique is to use satellite images as virtual maps to generate a database of the surface layer of the oceans. A BGR can be determined by the association patterns...
yielded by concurrent temporal and spatial variation between geo-locations.

Different mathematical approximations can be used to determine the association patterns between geo-locations. Santamaría-del-Ángel et al. (1994) defined 14 BGRs in the Gulf of California using a Principal Component Analysis (PCA) derived from data of weekly composites of CZCS images with a resolution of 4-km per pixel. In a survey of the same region, with the same sensor, but with monthly compositions of 9-km per pixel, Lunch-Cota (2000) determined only two BGRs using a cluster analysis. The difference between these two approximations is that monthly composites mask the effects of tides, which are one of the main components of turbulent kinetic energy in the Gulf of California. The relationship between turbulent kinetic energy and BGR is directly proportional to the number of BGRs, but inversely proportional to the size of the BGR. In other words, locations with high turbulent kinetic energy should have many, small BGRs, and locations with low turbulent kinetic energy should contain few, large BGRs.

One of the main characteristics of these approximations is that they feature static borders, which do not reflect the dynamic nature of the ocean. González-Silvera et al. (2006) proposed a new approximation to determine dynamic biogeographic regions (DBGRs) in the subtropical convergence zone in the southwest Atlantic ocean. Their approximation was based on a combination of images from SeaWiFS (Chl-α) and the Advanced Very High Resolution Radiometer (AVHRR, SST) in monthly composites with 1-km per pixel resolution. They proposed that the numerical combination of these two variables, represented by the first Standardized Empirical Orthogonal Function (SEOF), integrates the biological traits of the area (represented by Chl-α) with the physical traits (SST) and thus describes the synchronous variation between regions. Dynamic region determination (IOCCG, 2009b) can be based on the SEOF approximation, a powerful tool that accounts for the space/time variations of an area. It also allows daily determination of DBGR. This case study gives a step-by-step description of how to carry out dynamic regionalization using the SEOF approximation, highlighting what they are, how they are calculated, and how to interpret results.

To understand an SEOF, we must focus on the Empirical Orthogonal Function (EOF) and how it is calculated. EOF is the basis of Principal Component Analysis (PCA) and Factor Analysis (FA) and was first proposed by Kendall in 1930. EOFs can be described by first-degree polynomial equations. There are as many EOFs as variables, and the first EOF is the best linear combination of the collection of variables, as it has a higher total variance than the rest of the EOFs derived from the data.

Let us consider a hypothetical case with \(j \) variables, each with \(n_i \) occurrences (matrix \(M_1 \), see Table 19.1). The idea is to group the variables that display patterns of simultaneous variation or similarity. The original development considers the covariance \(\text{(Cov)} \) between two variables that is calculated with the formula shown in Equation 19.1.
Table 19.1 Matrix M_1 representing j variables each with n_i observations:

$$
\begin{bmatrix}
A & B & C & \cdots & j \\
\begin{array}{cccc}
n_{1A} & n_{1B} & n_{1C} & \cdots & n_{1j} \\
n_{2A} & n_{2B} & n_{2C} & n_{2j} \\
\vdots & \ddots & \ddots & \vdots \\
n_{iA} & n_{iB} & n_{iC} & \cdots & n_{ij}
\end{array}
\end{bmatrix}
$$

$$
Cov = \frac{\sum((y_i - \bar{y}) \times (x_i - \bar{x}))}{n_i - 1} \quad (19.1)
$$

where x_i and y_i represent each of the two variables, while \bar{x} and \bar{y} are the respective means of the variables. Calculating Cov for all the variables from A to j, we can construct a matrix of Cov. However, since the variables can be of a different nature (e.g., Chl-a, SST or water leaving radiance), it is necessary to normalize the original values to the same scale. The transformations must also respect the integrity of the original data distribution. One of the transformation that easily fulfills these requirements is the Z transformation (Equation 19.2);

$$
Z = \frac{(x_i - \bar{x})}{SD_x} \quad (19.2)
$$

where x_i represents each of the variables, \bar{x} is the mean and SD_x is the standard deviation of the variable. Applying Equation 19.2 to the original data (M_1), we obtain a matrix of normalized data M_2 (Table 19.2). If Cov is calculated with the normalized variables, we can construct the corresponding matrix of normalized variables (M_3, Table 19.3).

Table 19.2 Matrix M_2 representing normalized variables:

$$
\begin{bmatrix}
Z_A & Z_B & Z_C & \cdots & Z_j \\
\begin{array}{cccc}
Z_{1A} & Z_{1B} & Z_{1C} & \cdots & Z_{1j} \\
Z_{2A} & Z_{2B} & Z_{2C} & Z_{2j} \\
\vdots & \ddots & \ddots & \vdots \\
Z_{iA} & Z_{iB} & Z_{iC} & \cdots & Z_{ij}
\end{array}
\end{bmatrix}
$$

M_3 is a symmetrical square matrix (3×3), with a diagonal of one. Note that the symmetry is with respect to the principal diagonal and that M_3 is its own transposed
Table 19.3 Cov matrix of the normalized variables M_2. To simplify this explanation, $j = 3$ thus yielding three variables to associate.

\[
\begin{bmatrix}
 Z_{\text{var}} & Z_A & Z_B & Z_C \\
 Z_A & 1 & \text{Cov}_{ZAZ_A} & \text{Cov}_{ZAZ_C} \\
 Z_B & \text{Cov}_{ZAZ_B} & 1 & \text{Cov}_{ZBZ_B} \\
 Z_C & \text{Cov}_{ZAZ_C} & \text{Cov}_{ZBZ_C} & 1 \\
\end{bmatrix}
\]

matrix (For example: $M_3 = M_3^t$) and is therefore a mirror matrix. The matrix has a diagonal of one because $\text{Cov}_{AA} = \text{SD}_A$, which is why $\text{Cov}_{ZAZ_A} = \text{SD}_{ZA} = 1$.

One of the basic theorems that deals with this type of matrix is the Finite Dimension Spectral Theorem, which states that every symmetric matrix with real entrances can be characterized (diagonalized) by an orthogonal matrix. A square matrix is diagnosable if its j vectors are linearly independent. Therefore, we can characterize this symmetric square matrix with a diagonal of one (M_3) through the linear algebra resolution of its orthogonal matrix as defined by its own values (eigenvalues) and its own vectors (eigenvectors).

It is worth noting that the eigenvalues and eigenvectors calculated from the matrix $\text{Cov}_{Z_{\text{var}}} M_3$ are the same as those derived from a symmetric square matrix of correlation of the original variables (M_1) that avoid normalization (M_2). The correlation matrix can be derived by Pearson’s linear parameter correlation coefficient (r_P, Equation 19.3):

\[
r_P = \frac{\text{Cov}_{AB}}{\text{SD}_A \times \text{SD}_B},
\]

where $\text{Cov}_{AB} =$ covariance of variables A and B, $\text{SD}_A =$ standard deviation of A, and $\text{SD}_B =$ standard deviation of B. r_P denotes the rate of covariance between the dispersion product of each of the variables. It can also express the percentage of total variability of the data that can be explained by linear models. Another correlation coefficient that yields the same result is Spearman’s non-parametric correlation coefficient (r_S, Equation 19.4):

\[
r_S = \frac{\text{Cov}_{RA,RB}}{\text{SD}_{RA} \times \text{SD}_{RB}},
\]

where $\text{Cov}_{RA,RB} =$ covariance of the ranges of variables A and B, $\text{SD}_{RA} =$ standard deviation of the range of A, and $\text{SD}_{RB} =$ standard deviation of the range of B. r_S denotes the general degree of association (which involves several models, including linear ones) between the two variables.

The eigenvector of an EOF can be defined as the coefficients of a polynomial, remembering that an EOF can be expressed as a first-degree polynomial of order j. Therefore the EOF can be written as:
Dynamic Biogeographic Regions using Remote Sensing Data

\[EOF_1 = (b_{1A} \ast A) + (b_{1B} \ast B) + (b_{1C} \ast C) + \cdots + (b_{1j} \ast j) \]
\[EOF_2 = (b_{2A} \ast A) + (b_{2B} \ast B) + (b_{2C} \ast C) + \cdots + (b_{2j} \ast j) \]
\[\vdots \]
\[EOF_j = (b_{jA} \ast A) + (b_{jB} \ast B) + (b_{jC} \ast C) + \cdots + (b_{jj} \ast j) \]

where the data set \(b_1 \) constitutes eigenvector_1 and \(b_2 \) constitutes eigenvector_2. Developing each polynomial, we obtain a number of components equal to the initial number of variables \(j \), each having the same \(n \) as the original variables. Calculating eigenvalues and eigenvectors is not an easy task. If \(\lambda \) is an eigenvalue of a symmetric square matrix \(A \), then a vector \(\nu \) exists such that:

\[A\nu = \lambda \nu \quad A\nu - \lambda I\nu = 0 \]

The terms \(\lambda \nu \) and \(\lambda I \nu \) are given to facilitate the factoring of \(\nu \). \(I \) is the matrix of \(A \):

\[A\nu - \lambda I\nu = 0 \quad (A = \lambda I)\nu = 0. \]

These equations have a non-trivial solution (eigenvector \(\nu \) exists) if \(det(A - \lambda I) = 0 \). Since the determinant of a matrix is not affected by multiplying it by a non-null scalar, we can write \(det(\lambda I - A) = 0 \). To calculate the eigenvalues of \(A \), we can construct a characteristic polynomial:

\[\Delta_\lambda = det(\lambda I - A), \]

and find its roots. Each root of \(\Delta_\lambda \) will be an eigenvalue of \(A \). The calculation of eigenvectors is based on the eigenvalues and implies the arbitrary solution of \(j \) equations (polynomials), each with \(j \) unknowns (coefficients).

\(EOF_1 \) is the best numerical combination of the variables of interest and explains the greatest percentage of eigenspace variability. \(EOF_2 \) is the second best numerical combination and so on, until \(EOF_j \) is the combination that explains the least percentage of variability. To determine if the EOF is statistically significant, we can set the selection rule that all components with eigenvalues less than 1.0 are not significant (Santamaría-del-Ángel et al., 1994), and therefore the EOF associated with them are not valid because the percentage of variability explained is infinitesimal.

Considering \(EOF_1 \) as the best representation of the variables of interest, we shall focus on it to determine the DBGR. \(SEOF_1 \) (Equation 19.8 below) is the result of applying Equation 19.5 (\(EOF_1 \)) with the variables normalized by \(Z \) (Equation 19.2).

\[SEOF_1 = (b_{1Z_A} \ast Z_A) + (b_{1Z_B} \ast Z_B) + b_{1Z_C} \ast Z_C) + \cdots + (b_{1Z_j} \ast Z_j) \]

The values of \(SEOF_1 \) are easily interpreted. A value of zero represents the point where all the variables have their average value; a value of 1 indicates that the
variables are 1 SD above the mean; -1 implies 1 SD below the mean, and so on. It was observed that the maximum values of SEOF$_1$ (± 3.5 to 4) were found in areas with low variability. As the variability increases, the SEOF$_1$ values can be reduced to ± 1 to 2.

19.1.1 Demonstration section

Part of the California Current System (CCS) that covers the Southern California Bight, encompassing the CalCoFi area (http://www.calcofi.org) was selected for this study (Figure 19.1). To visualize the dynamic nature of DBGR, images from 12-13 April 2006 were selected (Figures 19.2 and 19.3). Daily SeaWiFS and MODIS-Aqua LAC images (1-km per pixel resolution) were used with equidistant cylindrical projections, generating the products Chl-a, nLw$_{412}$ and nLw$_{488}$ (MODIS-Aqua) or nLw$_{490}$ (SeaWiFS, Table 19.4) using standard algorithms.

Table 19.4 Identification of the spectroradiometric products (Chl-a, nLw$_{412}$, nLw$_{488}$, nLw$_{490}$) according to sensor and day of scan.

<table>
<thead>
<tr>
<th>Day</th>
<th>April 12 2006</th>
<th>April 13 2006</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensor</td>
<td>SeaWiFS</td>
<td>MODIS-Aqua</td>
</tr>
<tr>
<td>Chl-a</td>
<td>S2006102203905.L3_LAC.chla.hdf</td>
<td>A2006102204000.L3_LAC.chla.hdf</td>
</tr>
<tr>
<td>nLw$_{412}$</td>
<td>S2006102203905.L3_LAC.412.hdf</td>
<td>A2006102204000.L3_LAC.412.hdf</td>
</tr>
<tr>
<td>nLw$_{488}$</td>
<td>S2006102203905.L3_LAC.488.hdf</td>
<td>A2006102204000.L3_LAC.488.hdf</td>
</tr>
</tbody>
</table>

Figure 19.1 Area of study covering part of the CCS that covers the Southern California Bight (SCB) encompassing the CalCoFi area.
Figure 19.2 Daily LAC images (1-km pixels) from 12 April 2006 for SeaWiFS showing Chl-a (a); nLw$_{412}$ (c); and nLw$_{490}$ (e) and for MODIS-Aqua showing Chl-a (b); nLw$_{412}$ (d); and nLw$_{488}$ (f).
Figure 19.3 Daily LAC images (1-km pixels) from 12 April 2006 for SeaWiFS showing Chla (a); nLw₄₁₂ (c); and nLw₄₉₀ (e) and for MODIS-Aqua showing Chla (b); nLw₄₁₂ (d); and nLw₄₈₈ (f).
In this case study, DBGRs were determined based on the first SEOF calculated from nL_{412}, which was specifically selected because it is a measure of the signal of yellow substances frequently associated with the coast; its current importance has been described in IOCCG (2000; 2004; 2006; 2009b). nL_{488} (or 490 for SeaWiFS) was also used because it is the closest wavelength to 500 nm, where all the components in the water column absorb the least, such that it can be used to classify coastal and oceanic waters (IOCCG, 2000; 2006). These bio-optical concepts were investigated by Conversi and McGowan (1992) in waters off the coast of San Diego, California.

Figure 19.4 Daily LAC images (1-km pixels) of Chl-a for 12 and 13 April 2006 obtained from MODIS-Aqua (a, c) and SeaWiFS (b, d). The corresponding SEOF$_1$ derived from the combinations nL_{412} vs. nL_{488} or nL_{490} are superimposed on the LAC images. The yellow arrows indicate the mesotrophic or eutrophic pools derived from the displacement of coastal whirlpools.

Finally, SEOF$_1$ was calculated for each combination of nLw for each day and
sensor (Equation 19.8). The detailed procedure for calculating SEOF$_1$ and deriving DBGR is described in the following section. The resulting values are graphed and superimposed on the images of Chl-a (Figure 19.4). The isolines were found to follow the main oceanographic structures. Previous work using approximations based on SST and Chl-a in areas where both variables had a strong gradient (González-Silvera et al., 2006; Flores-de-Santiago et al., 2007) also observed these isoline-defined areas with low temperature (negative spatial anomalies) and high Chl-a concentrations (positive spatial anomalies). These observations occurred because there is an inverse relationship between Chl-a and SST.

nLw_{412} and nLw_{488} (or nLw_{490}) are directly related, causing an isoline of zero in the SEOF$_1$, which divides areas with positive normalized spatial anomalies from areas with negative normalized anomalies. Since the relationship between the variables is positive, and the coefficients described in eigenvector$_1$ are positive (0.707 for all the calculations of SEOF$_1$ for every combination per day per sensor), the values of ±1 in the SEOF$_1$ imply that the variables included in the model operate at ±1 standard deviation values.

Interpolations of the SEOF$_1$ values (Figure 19.4) describe the main oceanographic structures at meso-scale and imply that there is a direct relationship between the dynamic nature of the medium (e.g., winds, surges, and currents) and the number of structures. In fact, it can be seen that closer to the coastline, the isolines describe a greater number of structures. Some structures are well-defined, small areas (Figure 19.4 yellow arrows), which can be the result of small coastal eddies (tens to hundreds of kilometers in size). These eddies are associated with the coastline morphology and mixing processes; these structures can move outside the coastal area as mesotrophic or eutrophic pools. According to Strub et al. (1997) they can be found up to 500 km from the shore.

Three isolines can be highlighted in general: those with values of -2, -1, and 0 (Figures 19.4 and 19.5). A value of 0 indicates the separation of oligotrophic waters from mesotrophic and eutrophic waters. A value of -2 denotes coastal influence, and a value of -1 represents the Ensenada Front. With the exception of the -2 value, the values of 0 and -1 are very similar for MODIS and SeaWiFS data (Figure 19.5). The -2 value is more stable for the MODIS data and appears as a band that fluctuates with the coastline, whereas SeaWiFS data represent this coastal region as a collection of several pools that are near each other, but well defined. When the pattern of these "-2" pools is observed collectively, a distribution similar to that of MODIS can be seen. These observations are due to the differences between the values of the statistical descriptors (Table 19.5) that present each of the values involved in the construction of the SEOF$_1$. It should be noted that the 12 April SeaWiFS nLw have higher mean values and distributions than those obtained with MODIS. Interestingly, this pattern is reversed for the data collected on 13 April.

The Ensenada Front described by SEOF$_1$ = −1 is a very noteworthy oceanographic structure in the south California Current System and divides the area of study...
latitudinal. The southern portion has low pigment concentrations and moderate structure while the northern portion has higher concentrations and better-defined patterns (Pelááez and McGowan, 1986; Thomas and Strub 1990; Kahru and Mitchell, 2000; Santamaría-del-Ángel et al., 2002). Comparing the coastal influence region (-2), the Ensenada Front (-1), and the division between oligotrophic waters from mesotrophic-eutrophic waters (0) (Figures 19.5 and 19.6), the daily changes in shape and position of each isoline can be seen. These changes represent the fluid nature of the medium and demonstrate the dynamic concept of this technique of bioregionalization.

The same approximation can be applied to weekly or monthly composites, with smoother data, thus eliminating outlying values and minimizing the small pools caused by whirlpools, but reinforcing and stabilizing the description of the coastal
Table 19.5 Basic statistical descriptors of the marine pixels (without clouds) for nLw for each sensor and day of scan. n is the number of valid data points; \bar{x} is the mean value; SD is the standard deviation of the data.

<table>
<thead>
<tr>
<th></th>
<th>April 12 2006</th>
<th></th>
<th>April 13 2006</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SeaWiFS</td>
<td>MODIS-Aqua</td>
<td>SeaWiFS</td>
<td>MODIS-Aqua</td>
</tr>
<tr>
<td>nLw412</td>
<td>136928</td>
<td>136928</td>
<td>127574</td>
<td>127574</td>
</tr>
<tr>
<td>nLw490</td>
<td>127574</td>
<td>127574</td>
<td>142242</td>
<td>142242</td>
</tr>
<tr>
<td>nLw412</td>
<td>142242</td>
<td>142242</td>
<td>157671</td>
<td>157671</td>
</tr>
<tr>
<td>nLw498</td>
<td>157671</td>
<td>157671</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>136928</td>
<td>136928</td>
<td>127574</td>
<td>127574</td>
</tr>
<tr>
<td>\bar{x}</td>
<td>0.83257</td>
<td>0.81007</td>
<td>0.77688</td>
<td>0.77725</td>
</tr>
<tr>
<td>SD</td>
<td>0.45187</td>
<td>0.21130</td>
<td>0.43608</td>
<td>0.20628</td>
</tr>
<tr>
<td>Minimum</td>
<td>0.00100</td>
<td>0.02600</td>
<td>0.00100</td>
<td>0.10700</td>
</tr>
<tr>
<td>Maximum</td>
<td>6.37200</td>
<td>5.82800</td>
<td>2.81300</td>
<td>2.28200</td>
</tr>
</tbody>
</table>

Figure 19.6 Isoline scheme of the SEOF$_1$ = -2 (red), -1 (yellow) and 0 (green) for 12 April (solid lines) and 13 April (dashed lines) 2006 for (a) MODIS-Aqua and (b) SeaWiFS.

domain defined by a value of -2. It should be noted that the selection of variables used to calculate SEOF to determine DBGR is very important; they must feature a wide spatial gradient to enable greater precision in defining the mean value and more robust calculation of the normalized spatial anomalies. Chl-a and SST are especially well suited to areas of surge, oceanographic fronts, and enclosed seas, while nLw is well suited for oceanic or oligotrophic areas (although applications based on nLw can also be applied to very productive areas, such as the California Current System presented in this study. Currents are known to play an important role in the formation, evolution and changes of oceanographic structures through time, causing the CCS to be highly dynamic and complex, as manifested in the meanders, whirlpools and filaments that constantly overpower one another.

Haury et al. (1993) defined the Ensenada Front as a recurring border that divides warm oligotrophic waters from cold eutrophic waters, with a gradient ranging from a temperature of 16°C to the north and 19°C to the south. Santamaria-del-Ángel et al. (2002) analyzed CZCS images and defined the Ensenada Front as a recurring structure
shaped like an “M”, with an oceanographic signature defined by the isobar of 0.25 mg pigment m\(^{-3}\). Among the peaks, there is a valley located between 119° - 121°W that is associated with Concepción Point, California. In southern Baja California, Concepción Point is a true inflection point in the coastal morphology that promotes surge events (Dugdale et al. 1997) of cold waters, which are rich in nutrients and low in Chl-a when recently upwelled. Subsequently, the cold waters are displaced as plumes or filaments, with higher Chl-a concentrations and temperatures, and lower nutrient concentrations (Chereskin et al. 2000). Batteen (1997) and Cornuelle et al. (2000) described the cyclonic Southern California Eddy (SCE) to the south of the Concepción Point. This eddy is cyclonic and is thought to originate as a result of interactions between the California Countercurrent, the wind and the coastline. The SCE transports water from the surges to the south. The “M” shape of the Ensenada Front, and especially its valley, is the result of these processes combining with the oligotrophic waters that come from the south.

The changes in the location and shape of each isobar can be monitored from day to day by comparing the coastal influence (with a value of -2), the Ensenada Front (with a value of -1) and the separation of oligotrophic waters from the mesotrophic-eutrophic waters (with a value of 0; Figures 19.5 and 19.6). These changes represent the dynamic nature of the medium and represent the dynamic concept in this technique of bioregionalization. The Ensenada Front displays a latitudinal displacement that varies on a seasonal and interannual scale (Haury et al. 1993). During the cold months in the off-season of an El-Niño year, the Ensenada Front is located to the south of Ensenada Baja California. During the summer, the Ensenada Front can move to the north of San Diego, California, mainly due to the introduction of more oligotrophic waters. In the following months, this influx of oligotrophic waters wanes, causing the Ensenada Front to move to the south again. This fluctuation generally occurs from 30° - 31°N up to 32°30’N.

19.2 Training

Using the program WIM (Windows Image Manager http://www.wimsoft.com), each hdf nLw image was transformed into latitude, longitude, and geophysical value files in txt format with the extension ".dat". These files were arranged into two ".csv" files (2006102DATABASE.csv and 2006103DATABASE.csv, April 12 and 13, 2006, respectively) which can be downloaded from the IOCCG website at: http://www.ioccg.org/handbook/biogeo/ and which can be opened with Microsoft Excel. The ".csv" files have six columns, each with 262,432 rows that represent all of the image pixels in addition to the heading of each column. All the images must have the same resolution so that the pixels can be easily geo-differentiated. Equidistant cylindric projection allows the mathematical construction of the latitude-longitude-geophysical value matrices with greater ease. This is because the degrees of latitude
Table 19.6 Pearson’s correlation matrices of the original variables. April 12, 2006: M₄, MODIS-Aqua; M₅, SeaWiFS. April 13, 2006: M₆, MODIS-Aqua; M₇, SeaWiFS.

<table>
<thead>
<tr>
<th>MODIS</th>
<th>nLw₄₁₂</th>
<th>nLw₄₈₈</th>
</tr>
</thead>
<tbody>
<tr>
<td>M₄ = nLw₄₁₂</td>
<td>1</td>
<td>0.95618</td>
</tr>
<tr>
<td>nLw₄₈₈</td>
<td>0.95618</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SeaWiFS</th>
<th>nLw₄₁₂</th>
<th>nLw₄₉₀</th>
</tr>
</thead>
<tbody>
<tr>
<td>M₅ = nLw₄₁₂</td>
<td>1</td>
<td>0.94365</td>
</tr>
<tr>
<td>nLw₄₉₀</td>
<td>0.94365</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MODIS</th>
<th>nLw₄₁₂</th>
<th>nLw₄₈₈</th>
</tr>
</thead>
<tbody>
<tr>
<td>M₆ = nLw₄₁₂</td>
<td>1</td>
<td>0.94600</td>
</tr>
<tr>
<td>nLw₄₈₈</td>
<td>0.94600</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SeaWiFS</th>
<th>nLw₄₁₂</th>
<th>nLw₄₉₀</th>
</tr>
</thead>
<tbody>
<tr>
<td>M₇ = nLw₄₁₂</td>
<td>1</td>
<td>0.91790</td>
</tr>
<tr>
<td>nLw₄₉₀</td>
<td>0.91790</td>
<td>1</td>
</tr>
</tbody>
</table>

and longitude always have the same distance whether at the equator or at the poles. The six columns are latitude (A); longitude (B); MODIS nLw₄₁₂ (C); MODIS nLw₄₈₈ (D); SeaWiFS nLw₄₁₂ (E); and SeaWiFS nLw₄₉₀ (F). Not all data-handling software can process such a large amount of data, e.g. Microsoft Excel 2003 can only hold 60,000 rows of data (Microsoft Excel 2007 SP1 can analyze a greater volume of data). You will note several rows of zeroes in columns C to F, indicating NaN (Not a Number) values, which are the result sensor saturation (due to land or clouds). The next step is to eliminate NaN values (land and clouds), leaving only marine data with nLw values. The filtered data is presented in the files ”2006102withoutnan.csv” and ”2006103withoutnan.csv”, and the basic statistical descriptors of each variable per sensor are presented on Table 19.5. The data from each sensor contain a different number of valid points for the same day because NaN values are dependent on conditions, such as cloud coverage and sea breeze, that change in a matter of hours, and each sensor scans at a different time of day (SeaWiFS at noon and MODIS-Aqua at 1:30 PM).

The next step is to construct the symmetric square matrix of Pearson’s linear correlations (Equation 19.3) with the original data (M₄, M₅, M₆, M₇, Table 19.6). The original values are normalized to Z (Equation 19.2) using the basic descriptors of each variable (Table 19.5) (the normalized variables can be found in the files ”Z2006102withoutnan.csv” and ”Z2006103withoutnan.csv”) with which the Cov matrix can be calculated using Equation 19.1 (M₈, M₉, M₁₀,M₁₁, Table 19.7). At this point, the Pearson’s correlation matrices of the original variables (Table 19.6) are identical to the matrices of the normalized variables (Table 19.7). We shall use matrix M₄ (which is equal to matrix M₈) as an example of the calculation of eigenvector₁ that has the coefficients that consider the normalized variables of Equation 19.8 used to calculate SEOF₁. The orthogonal solution of this type of matrix can have many approximations, depending on the number of variables. For example, seven variables would imply solving seven simultaneous equations, each with seven unknowns (eigenvector coefficients). To show one of the many approximations available for the calculation of eigenvectors and eigenvalues,
Table 19.7 Cov matrices normalized to Z. April 12, 2006: M₈, MODIS-Aqua; M₉, SeaWiFS. April 13, 2006: M₁₀, MODIS-Aqua; M₁₁, SeaWiFS.

<table>
<thead>
<tr>
<th>MODIS</th>
<th>ZnLw₄₁₂</th>
<th>ZnLw₄₈₈</th>
<th>ZnLw₄₁₂</th>
<th>ZnLw₄₉₀</th>
</tr>
</thead>
<tbody>
<tr>
<td>M₈ = ZnLw₄₁₂</td>
<td>1</td>
<td>0.95618</td>
<td>1</td>
<td>0.95618</td>
</tr>
<tr>
<td>ZnLw₄₈₈</td>
<td>0.95618</td>
<td>1</td>
<td>0.95618</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SeaWiFS</th>
<th>ZnLw₄₁₂</th>
<th>ZnLw₄₉₀</th>
<th>ZnLw₄₁₂</th>
<th>ZnLw₄₉₀</th>
</tr>
</thead>
<tbody>
<tr>
<td>M₉ = ZnLw₄₁₂</td>
<td>1</td>
<td>0.94365</td>
<td>1</td>
<td>0.94365</td>
</tr>
<tr>
<td>ZnLw₄₉₀</td>
<td>0.94365</td>
<td>1</td>
<td>0.94365</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MODIS</th>
<th>ZnLw₄₁₂</th>
<th>ZnLw₄₈₈</th>
<th>ZnLw₄₁₂</th>
<th>ZnLw₄₉₀</th>
</tr>
</thead>
<tbody>
<tr>
<td>M₁₀ = ZnLw₄₁₂</td>
<td>1</td>
<td>0.94600</td>
<td>1</td>
<td>0.94600</td>
</tr>
<tr>
<td>ZnLw₄₈₈</td>
<td>0.94600</td>
<td>1</td>
<td>0.94600</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SeaWiFS</th>
<th>ZnLw₄₁₂</th>
<th>ZnLw₄₉₀</th>
<th>ZnLw₄₁₂</th>
<th>ZnLw₄₉₀</th>
</tr>
</thead>
<tbody>
<tr>
<td>M₁₁ = ZnLw₄₁₂</td>
<td>1</td>
<td>0.91790</td>
<td>1</td>
<td>0.91790</td>
</tr>
<tr>
<td>ZnLw₄₉₀</td>
<td>0.91790</td>
<td>1</td>
<td>0.91790</td>
<td>1</td>
</tr>
</tbody>
</table>

The simplest symmetric square matrix (a matrix of order 2×2, as derived in this study) is used. If $M₄ = A$:

\[
A + \begin{bmatrix}
1 & 0.956182 \\
0.95618 & 1
\end{bmatrix}
\]

Since the determinant of a matrix is not affected when the matrix is multiplied by a non-null scalar, we can write $\det(\lambda I - A) = 0$ (see Background Information). To calculate the eigenvalues of A, we can construct a characteristic polynomial:

\[
\Delta_\lambda = \det(\lambda I - A)
\]

The matrix $B = (\lambda I - A)$ is constructed;

\[
B = (\lambda I - A) = \lambda \begin{bmatrix}
1 & 0 \\
0 & 1
\end{bmatrix} - \begin{bmatrix}
1 & 0.9561822 \\
0.9561822 & 1
\end{bmatrix} = \begin{bmatrix}
(\lambda - 1) & 0.9561822 \\
0.9561822 & (\lambda - 1)
\end{bmatrix} = 0
\]

and its determinant is calculated. With lower order matrices (2^{nd} or 3^{rd} order), the determinant is calculated with simple rules derived from Laplace's theorem. The determinants of a second order matrix are calculated with the formula:

\[
\det(B) = [(x)]_{11} \times [x_{22}] - [(x_{12}) \times [x_{21}] = (x_{11} \times x_{22}) - (x_{12} \times x_{21})
\]

that has a solution in the form of the characteristic polynomial if it is developed.

\[
\Delta_\lambda = \det(B) = (\lambda - 1)^2 - 0.836 = (\lambda^2 + 2\lambda) - 0.836 = 0
\]

The solutions of characteristic polynomial Δ_λ would be the eigenvalues $\lambda_1 = 1.9562$ and $\lambda_2 = 0.0438$. The vectors associated with $\lambda_1 = 1.9562$ must satisfy:

\[
A\nu_1 = \lambda_1 \nu_1
\]
An equation system with infinite solutions is then created, and in this case it is composed of two simultaneous equations, each with two unknowns:

\[
\begin{bmatrix}
1 & 0.95618 \\
0.95618 & 1
\end{bmatrix}
\begin{bmatrix}
v_{11} \\
v_{21}
\end{bmatrix}
= 1.9562
\begin{bmatrix}
v_{11} \\
v_{21}
\end{bmatrix}
\]

\[
\begin{bmatrix}
v_{11} + 0.95618v_{21} \\
0.95618v_{11} + v_{21}
\end{bmatrix}
= 1.9562v_{11}
\]

The solution of these equations is not trivial, since many possible solutions can be found. Furthermore, many different values would have to be tested. The most popular method to obtain a vector associated with \(\lambda_1 = 1.9562 \) is to randomly assign a value to \(v_{11} \) or \(v_{21} \) and test them to see if they fit the solution. This is why, although the theory for the development of EOF was described a long time ago, it did not become popular until the arrival of FORTRAN, which allowed the development of software that could run several approximations interactively, finding the best solutions for this simultaneous equation system. Currently, software programs like MINITAB (http://www.minitab.com), MATLAB (http://www.mathworks.com) and/or R (http://www.r-project.org), which handle matrices, eigenvalue, and eigenvector calculations to determine the eigenspaces related to the collection of combined variables in Pearson’s correlation matrix or the \(Cov \) matrix (for normalized variables), speed up and increase the precision of the calculation process. In this case study, \(eigenvector_1 (v_1) \) is defined by:

\[
v_1 = \begin{bmatrix}
0.707 \\
0.707
\end{bmatrix}
\]

SEOF\(_1\) will be calculated using the general form of Equation 19.8 and the normalized data (Z2006102withoutnan.csv):

\[
SEOF_1 = (0.707 \ast Z_{nLw_{412}}) + (0.707 \ast Z_{nLw_{488}})
\]

\[19.9\]

SEOF\(_1\) has the same number of observations as the combined variables (127,574 in this case). When determining DBGR, the values of SEO\(_1\) can be interpreted as normalized spatial anomalies that can be used to generate isoline maps that will determine different areas with similar characteristics to the variables being combined (Figures 19.4, 19.5 and 19.6).
19.3 Questions

Q1: What is the Ensenada Front?
Q2: Why is it called Ensenada Front?
Q3: What is its oceanographic importance in the CCS?
Q4: How can it be detected?
Q5: How can the coastal influence within the study area be determined?
Q6: Why did EOF only become popular recently when the theory was developed a long time ago?
Q7: Why are there small differences in DBGR determined with SEOF-based approximations using daily LAC data obtained with MODIS-Aqua and SeaWiFS?
Q8: When and where can we expect DBGR to be identical using data from MODIS or SeaWiFS or another sensor, such as MERIS?
Q9: Which areas are inadequate for the determination of DBGR from the SEOF obtained from the observations of Chl-a and SST?
Q10: What is the meaning of SEOF$_1$ = 0?
Q11: Why is it important to record all images at the same resolution?

19.4 Answers

A1: The Ensenada Front (EF) is one of the most obvious oceanographic structures that divide the area latitudinally into two parts; the southern part, which has low pigment concentrations with a moderate structure, and the northern part, which has higher pigment concentrations and more well-defined patterns. The EF is a recurring structure that is shaped like an “M”.

A2: Haury et al. (1993) named the EF based on the location of the front near Ensenada, Baja California in the CZCS image where it was first described by Peláez and McGowan (1986).

A3: First, the EF clearly divides the study area into two parts: an oligotrophic region to the south and a mesotrophic/eutrophic region. The position of the EF is also influenced by events like El Niño, and the EF is more prominent to the east than to the north in the off-season of an El Niño year. The EF is formed as a result of the combined effects of the physical barriers (Concepción Point), the mixing processes (surges) and the variability of the California Countercurrent.
A4: In this study, the $\text{SEOF}_1 = -1$ condition can be detected, but previous studies based on ocean colour images detected the EF based on the isobar of 0.25 mg pigment m^{-3}.

A5: The coastal influence can be detected with $\text{SEOF} = -2$. Superimposing the SEOF onto Chl-a maps shows that the SEOF determines a band parallel to the coast and, on certain occasions, defines small mesotrophic pools that displace themselves to the south of the EF.

A6: EOF implies the solution of a system of n simultaneous equations, each with n unknowns. The solution of these equations is not trivial because this equation system has an infinite number of solutions. To find some of the possible solutions, many values would have to be tested simultaneously. Therefore, although the theory for the development of EOF was described a long time ago, its use did not become popular until the arrival of FORTRAN, which allowed the development of software programs that can interactively test several approximations, finding the best solution to this system of simultaneous equations.

A7: The differences are due to the differences in the statistical descriptor values that are related to each of the variables involved in the construction of SEOF_1. Different mean values and standard deviations yield transforms with different geolocalized pixels with values of 0 and ±1 or 2.

A8: This can be expected if the analysis is performed with weekly, monthly, seasonal, or average-climate compositions because the approximations based on these compositions smooth the data, removing outlying values (high noise). This would result in a data dispersion calculation (standard deviation) that is more consistent, which would translate to better-defined regions. It should be noted that these differences are prevalent in areas with high Chl-a concentrations, so that temporal composition processes would smooth out the outlying values that are commonly found by the algorithms used in areas with high Chl-a concentrations.

A9: In order to determine DBGR, it is very important that the variables used for the construction of SEOF have a large number of data, with a large gradient, to define the mean value more precisely and thus be able to calculate more robust normalized spatial anomalies. For example, if Chl-a and SST are selected as the variables to be combined, it must be ensured that both variables have a strong gradient (such as surge areas, oceanographic fronts and enclosed seas). In oligotrophic oceanic or coastal areas (e.g. equatorial), variables must have a considerable gradient to calculate robust descriptive factors that will consolidate the normalized spatial anomalies. The spectroradiometric products of nLw can be used to carry out this approximation, whether in pairs (as in this study) or using all the nLw available.

A10: The isolines of SEOF_1 values are generally related to the combinations of
normalized anomalies. A value of zero (0) indicates that the variables combined with the SEOF are operating at their mean values. This is the isoline that shows the most striking contrasts. González-Silvera et al. (2006) and Flores-de-Santiago et al. (2007) found that this isoline separated areas with low temperature (negative spatial anomalies) from those areas with a high Chl-a concentration (positive spatial anomalies) due to the inverse relationship between Chl-a and SST. In this case, the relationship between nLw\textsubscript{412} and nLw\textsubscript{490} (or nLw\textsubscript{488}) is direct, such that the zero line of SEOF\textsubscript{1} divides areas with positive normalized anomalies from the areas where negative normalized anomalies are found.

A11: It is very important that all images have the same resolution because it makes it easier to create a software program that extracts data based on latitude-longitude-geophysical value matrices. If the images had different resolutions, the matrices would each have different dimensions, which would cause the introduction of another variable into the data extraction process. Equidistant cylindrical projection allows the mathematical construction of the latitude-longitude-geophysical value matrices with the greatest ease because the degrees of latitude and longitude have the same distance at both the equator and the poles.

19.5 References

Handbook of Satellite Remote Sensing Image Interpretation: Marine Applications

19.5.1 Further Reading

