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7.1 Background

Many of the red tides (i.e., harmful algal blooms or HABs) in the eastern Gulf of

Mexico (GOM) (24◦–31◦N, 90◦–80◦W) are caused by the toxic dinoflagellate, Karenia

brevis (previously known as Gymnodinium breve or G. breve). Brevetoxins produced

during K. brevis blooms can kill fish, mammals, and other marine organisms and

cause respiratory irritation in humans (Hemmert, 1975; Asai et al., 1982; Landsberg

and Steidinger, 1998; Kirkpatrick et al., 2004; Flewelling et al., 2005). K. brevis

blooms can also adversely impact local tourism and commercial shellfish industries,

leading to economic losses that have exceeded millions of US dollars during a single

bloom event (Habas and Gilbert, 1974; Larkin and Adams, 2007).

Although K. brevis blooms can change the water to many different colours (e.g.,

brown, red, or even black) depending on the bloom’s cell concentration and the

concentration of other important optical constituents (Dierssen et al., 2006), they

are commonly referred to as red tides. In the eastern GOM, red tides occur every

year, mainly from late summer to early spring, yet their occurrence frequency,

intensity, spatial extent, and duration all vary from year to year. Despite many years

of community efforts, the mechanisms of initiation, maintenance and demise of red

tides are still poorly understood and require further investigation. Data collected

between the 1950’s and the 1980’s suggest that red tides are initiated offshore

in nutrient-poor waters (Tester and Steidinger, 1997), and that they move toward

shore by winds and currents, where they concentrate near fronts and utilize new

nutrients from coastal runoff (Walsh et al., 2006). Several hypotheses that attempt to

explain new nutrient supplies for these HABs have been proposed, including nitrogen

fixation stimulated by atmospheric deposition of iron-rich Saharan dust particles
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(Lenes et al., 2001; Walsh and Steidinger, 2001; Walsh et al., 2006), submarine

groundwater discharge (Hu et al., 2006), and dead fish (Walsh et al., 2009). These

hypotheses remain to be tested, and these possible sources need to be evaluated

relative to sources such as upwelling of deeper GOM waters, riverine inputs, and

benthic nutrient regeneration.

Timely information of K. brevis blooms is essential for all aspects of red tide

studies, including testing hypotheses, assessing and managing the coastal environ-

ment, and forecasting and mitigation of red tides. In the past few decades, several

long-term monitoring programs have invested significant resources in collecting red

tide information. These include the Monitoring and Event Response for Harmful

Algal Blooms (MERHAB) program supported by the U.S. NOAA (National Oceanic

and Atmospheric Administration) and the Florida Fish and Wildlife Research Insti-

tute, several other programs supported by the state of Florida, local environmental

groups, and volunteers. Most of these efforts rely on water sample analysis from

field surveys because this is currently the only accurate means to differentiate K.

brevis from other phytoplankton species. However, field surveys are often lim-

ited in spatial coverage and temporal frequency, especially during severe weather

events. This lack of synoptic and frequent field observations makes it difficult to

1) provide near real-time information for rapid response, and 2) understand the

long-term red tide occurrence statistics. For example, there has been substantial

discussion and debate within the scientific community as to whether there is any

historical trend in red tide occurrence along the west-central Florida coast. While

Brand and Compton (2007) found that the frequency and duration of red tides

appear to have increased in recent years, there was also argument (Christman and

Young, 2006; Alcock, 2007) that this observation may simply be due to the un-

evenly distributed sampling scheme, the so-called observer effect (i.e. increased

sampling during recent years because of increased public and scientific awareness -

http://research.myfwc.com/features/view_article.asp?id=27095).

In addition to the intensive field sampling efforts, satellite remote sensing can

offer synoptic and more frequent measurements, with imagery available in near

real-time (Babin et al., 2008). Therefore, detection of red tides via remote sensing

is highly desirable, and thus has been an active research topic. Satellite imagery

already has been used for operational monitoring of HABs in the GOM region. Some

of the disadvantages are that satellite remote sensing using visible radiance is

limited by cloud cover, spatial resolution, lack of information with depth below

the surface, and algorithm uncertainty. While the first three are inherent with a

given satellite-based instrument and cannot be fully "corrected", there has been

continuous progress in algorithm development to improve the accuracy in red tide

detection. Here, using several examples, we demonstrate how to use Moderate

Resolution Imaging Spectroradiometer (MODIS) satellite imagery to differentiate the

various waters, including K. brevis red tides in the eastern GOM. We will begin by

reviewing briefly the underlying principles of red tide detection from space, and

http://research.myfwc.com/features/view_article.asp?id=27095
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follow with descriptions of the data and methods. We show several examples to

illustrate the potential of this technology.

7.1.1 Principles

The use of ocean-colour satellites for rapid detection of red tides in the eastern GOM

has been described previously (e.g., Stumpf et al., 2003a; Tomlinson et al., 2004;

2008; Hu et al., 2005; Cannizzaro et al., 2008; Amin et al., 2009). K. brevis cells

contain chlorophyll-a and accessory pigments. These pigments have reflectance

spectra that allow them to be differentiated from other water constituents, such as

suspended non-living particles. The chlorophyll-a content of K. brevis cells ranges

from ∼8.5 pg/cell for natural populations to ∼25 pg/cell for cultured populations

(Evens et al., 2001). Assuming 10 pg/cell, a concentration of 2x104 cells l−1 implies

0.2 mg m−3 of chlorophyll-a, close to the clear-water background chlorophyll-a

concentration (Chl-a) in the eastern GOM. Satellite ocean-colour instruments typically

have a measurement precision (not accuracy) of 0.01 – 0.02 mg m−3 for blue waters.

In order for a K. brevis bloom to be detected and identified as such, however, Chl-a

needs to exceed 0.5 – 1 mg m−3, corresponding to K. brevis cell concentrations of

5x104 to 105 cells l−1. These concentrations are high enough to cause fish kills

(Steidinger et al., 1998).

Satellite-derived Chl-a data products can be used to identify areas of possible red

tides. For example, a Chl-anomaly technique was proposed by Stumpf et al. (2003a)

to flag "new" blooms in an area relative to conditions two weeks earlier — under

certain conditions these new blooms can be flagged as potential K. brevis blooms.

There are practical difficulties when applying the Chl-based approach to identify

red tides in the eastern GOM using remote sensing data. The first is the difficulty

with obtaining an accurate chlorophyll estimate in many coastal waters because

of errors in the atmospheric correction algorithms (to remove atmospheric effects

from the spectral satellite signal) and bio-optical inversion algorithms (to convert

the surface spectral signal to Chl-a and other bio-optical parameters). In these

waters, the optical signal may not be dominated by phytoplankton, but instead by

coloured dissolved organic matter (CDOM) from in situ phytoplankton degradation or

terrestrial runoff, resuspended sediments, and/or the bottom effects in clear, shallow

water. The empirical band-ratio OC4 algorithm (O’Reilly et al., 2000; version 4) that

is used to convert the surface spectral signal to Chl-a does not differentiate between

optically important constituents, but rather regards all influences as originating

from Chl-a. This causes large errors in the Chl-a estimates for the eastern GOM

coastal waters (Hu et al., 2003; 2005). Although a semi-analytical algorithm designed

for MODIS (Carder et al., 1999) can separate CDOM from Chl-a and thus improve

Chl-a estimates in clear and moderately turbid waters (Hu et al., 2003), in highly

turbid coastal waters the algorithm switches to an empirical blue/green band-ratio

form.
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The second difficulty is differentiating K. brevis blooms from other phytoplank-

ton blooms. Chl-a cannot be used for this task because both types of blooms contain

high Chl-a. Discrimination between K. brevis and other phytoplankton groups using

in situ optical observations has been done with some success (Cullen et al., 1997;

Millie et al., 1997; Lohrenz et al., 1999; Schofield et al., 1999; Kirkpatrick et al.,

2000). However, these techniques require hyperspectral data (e.g., Craig et al., 2006),

which are not available from satellites. Several HAB detection techniques have been

proposed that can use multi-spectral satellite data. These include methods involving

particulate backscattering (Cannizzaro et al., 2008), spectral curvature (Tomlinson

et al., 2008), a combination of red-wavelength bands (Amin et al., 2009), and image

segmentation (Zhang et al., 2002).

In this demonstration, we will combine the techniques proposed by Hu et al.

(2005) and Cannizzaro et al. (2008). We used MODIS satellite data to show how

to differentiate bloom waters from coastal waters in which other constituents

dominate the optical signal, and to differentiate K. brevis blooms from other blooms.

Specifically, we distinguished phytoplankton blooms from CDOM-rich waters by

examining spectral water-leaving radiance and solar stimulated fluorescence (Hu et

al., 2005), and K. brevis blooms were distinguished from non-K. brevis blooms by

examining bloom backscattering efficiency (Cannizzaro et al., 2008).

7.2 Data and Methods

MODIS Level-1a data were obtained from the U.S. NASA Goddard Space Flight Center

(GSFC) (http://oceancolor.gsfc.nasa.gov). These data are open to the public

within a few hours (typically 3 – 6) of collection by the spacecraft. The following

steps were used to generate georeferenced MODIS images at 1-km resolution:

1. MODIS/Aqua Level-1a data were processed to generate Level-1b (calibrated

total radiance) data for the "ocean colour" spectral wavebands in the visible

and near-infrared, and geolocation data using SeaWiFS Data Analysis System

(SeaDAS) software. The 1-km bands were designed for the ocean with sufficient

sensitivity to detect subtle changes in ocean colour. The Level-1b and geo-

location data were stored in computer files in HDF (Hierarchical Data Format);

2. MODIS Level-1b data were atmospherically corrected to generate the spec-

tral remote sensing reflectance (Rrs(λ), sr−1) and normalized water-leaving

radiance (nLw(λ), mW cm−2 µm−1 sr−1) using SeaDAS. These two parameters

can be derived from each other using the extraterrestrial solar irradiance

(time-independent constants). During this step, ancillary data (surface wind,

pressure, total ozone thickness, and atmospheric water vapor content) were

downloaded from NASA/GSFC and used to estimate the atmospheric contribu-

tion to the satellite-received radiance. The atmospheric correction was based

on the two near-infrared (NIR) bands at 748 nm and 869 nm, from which atmo-

http://oceancolor.gsfc.nasa.gov
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spheric properties were derived and used to estimate the properties at other

wavelengths on a per-pixel basis (Gordon and Wang, 1994). Over turbid coastal

waters, a modification to the atmospheric correction scheme was used that

involves using an iterative approach to account for the non-zero water-leaving

radiance in the NIR (Stumpf et al., 2003b);

3. The spectral Rrs(λ) was used to derive two data products: Chl-a from an em-

pirical band-ratio algorithm (OC4v4; O’Reilly et al., 2000); particulate backscat-

tering coefficient at 551 nm (bbp,551) using a Quasi-Analytical Algorithm (QAA,

Lee et al., 2002). Using nLw(λ) data from three MODIS wavebands at 667, 678,

and 748 nm we derived the Fluorescence Line Height (FLH, mW cm−2 µm−1

sr−1) product using a linear baseline algorithm (Letelier et al., 1996). Further,

the empirically-derived Chl-a was used to estimate the particulate backscat-

tering coefficient at 551 nm using the Morel (1988) algorithm, designed for

phytoplankton dominated (i.e., Case 1) waters:

bbp,Morel = 0.3× Chl0.62 × (0.002+ 0.02× (0.5− 0.25× log10Chl)) (7.1)

4. These products Rrs(λ), nLw(λ), Chl-a, bbp,QAA, bbp,Morel and FLH) were geo-

referenced to a cylindrical equidistant (rectangular, also called geographic

lat/lon) projection for the area of interest. The final images had a spatial

resolution equivalent to 1-km per image pixel. The map-projected products

were stored in HDF files. Individual products were also converted to raster

image formats with an embedded palette using pre-defined colour look-up

tables;

5. nLw(λ) data at 551, 488, and 443 nm were used as the red, green and blue

channels to compose an Enhanced RGB (ERGB) image. The red waveband (667

nm) was not used because water-leaving radiance at this wavelength (nLw(667))

is very low except in sediment-rich waters, thus providing little information

on red tides.

The Florida Fish and Wildlife Research Institute (FWRI) has compiled an in situ

database for K. brevis cell concentration data. Water samples have been collected

by various research and volunteer groups in the eastern GOM and analyzed using

microscopic enumeration techniques. These data, although not continuous in either

space or time, were used as ground-truth to help interpret the MODIS imagery. Below

we demonstrate, step by step, how the various colour features are identified and

interpreted from the MODIS imagery.

7.3 Demonstration

In 2005, a long-lasting, extensive red tide event occurred on the west Florida shelf

(WFS, 24.5◦–30.1◦N and 85.1◦–81.5◦W), which may have been related to excessive

rainfall in both 2004 and 2005 (Hu et al., 2006). The event started in January 2005
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near Tampa Bay, Florida (Tampa Bay is marked as "A" in Figure 7.1a). Figure 7.1

shows several MODIS products from a scene collected on 21 January 2005, where

the red tide patch can be seen.

Cells/liter  
NOT PRESENT
PRESENT (1,000 cells or less)
VERY LOWa (>1,000 to <5,000)
VERY LOWb (5,000 to 10,000)
LOWa (>10,000 to <50,000)
LOWb (50,000 to <100,000)
MEDIUM (100,000 to <1,000,000)
HIGH (>1,000,000)

Northwest
Region

Southwest
Region

Key West

East
Region

Karenia brevis counts, 18-20 January 2005

A

B

Figure 7.1 (a – d) MODIS images on 21 January 2005 showing a K. brevis bloom
in coastal waters between Tampa Bay (A, 27.75◦N, 82.56◦W) and Charlotte Har-
bor (B, 26.75◦N, 82.1◦W). The images cover the area between approximately
24.5◦–30.1◦N and 85.1◦–81.5◦W. The various image types were generated us-
ing Steps 1 – 5 described in the Data and Methods section. In (d), the bbp

ratio is defined as bbp,QAA/bbp,Morel (e) K. brevis concentration (in cells l−1) ob-
tained from FWRI (http://research.myfwc.com/gallery/image_details.
asp?id=24764).

Figure 7.1a shows an ERGB image, where the dark colours result from increased

light absorption in the blue wavelength (443 nm) due to high concentrations of

CDOM and/or chlorophyll-a, and bright colours (light blue, yellow and white) result

from suspended sediments and/or shallow bottom. The corresponding Chl-a image

http://research.myfwc.com/gallery/image_details.asp?id=24764
http://research.myfwc.com/gallery/image_details.asp?id=24764
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in Figure 7.1b, derived from the blue-green band ratio algorithm, shows erroneously

elevated Chl-a along the entire coast. In contrast, the FLH image in Figure 7.1c

helps distinguish dark CDOM-rich waters (erroneously interpreted as high Chl-a in

band ratio algorithms) from phytoplankton-rich waters. FLH is insensitive to CDOM

(McKee et al., 2007). However, FLH is not a reliable parameter in sediment-rich waters

(Gilerson et al., 2007). The high FLH values near Charlotte Harbor (Charlotte Harbor

is marked as "B" in Figure 7.1a) for example, may in part be false interpretation of

suspended sediments.

Figure 7.1 reveals: 1) Chl-rich waters (dark colour in ERGB with high FLH values);

2) CDOM-rich waters (dark colour in ERGB with low FLH values); 3) sediment-rich

waters (bright colour in ERGB with high FLH values); and 4) shallow, clear waters

(bright colour in ERGB with low FLH values). Of these, observations 3 and 4 are

sometimes difficult to distinguish from each other, especially for very shallow waters

(< 5 m water depth) because nLw in the fluorescence bands may also be influenced

by benthic algae or sediments. This should not affect our interpretation because

both cases are excluded as potential K. brevis blooms. Of the four, observation 1

represents waters with high biomass (Chl-a) and therefore can be K. brevis or other

blooms. However, there are two drawbacks from this interpretation. The first is its

qualitative nature. Indeed, the terms "high" and "low" only provide a relative sense.

The second drawback is that it is impossible to tell if the high-FLH dark waters

contain high concentrations of the toxic K. brevis or other phytoplankton species

(such as diatoms).

To overcome these two difficulties, we first assume that FLH > 0.015 – 0.02 mW

cm−2 µm−1 sr−1 can indicate bloom conditions and FLH < 0.01 – 0.015 represent non-

bloom conditions (note that the values between 0.01 and 0.02 represent transition

conditions). Observations from South Florida coastal waters suggest that a FLH

value of 0.01 mW cm−2 µm−1 sr−1 is equivalent to about 1 mg m−3 Chl-a for the

range of 0.4 – 4 mg m−3 (Chl = 1.255 × (FLH × 100)0.86, r=0.92, n=77, Hu et al.,

2005), although the relationship between FLH and Chl-a (a function of fluorescence

efficiency) varies.

The technique proposed by Cannizzaro et al. (2008) was then used to examine

the backscattering coefficient at 551 nm (bbp,551) estimated with the QAA algorithm

(Lee et al., 2002) in reference against bbp,Morel from a Case-1 empirical algorithm

(Morel, 1988; Equation 7.1). Results are shown in Figure 7.1d. To exclude non-

productive waters, pixels with Chl-a < 1.5 mg m−3 are masked as black. Because K.

brevis blooms exhibit a lower backscattering efficiency compared to diatom blooms,

the warm colours (yellow-red, with bbp,551/bbp,Morel < 1.0) in Figure 7.1d represent

potential K. brevis blooms. Indeed, near concurrent in situ water sample analysis

from FWRI confirms this finding (Figure 7.1e), where waters offshore of Tampa

Bay showed medium concentrations of K. brevis cells (100,000 to <1,000,000 cells

l−1). Further, in nearshore waters there were no K. brevis found in these samples,

consistent with the high bbp ratios shown in Figure 7.1d. In other words, the high-
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FLH values near Charlotte Harbor (sediment-rich water as identified by the bright

colour in Figure 7.1a) is successfully discarded as potential K. brevis blooms in

Figure 7.1d.

Cells/liter  
NOT PRESENT
PRESENT (1,000 cells or less)
VERY LOWa (>1,000 to <5,000)
VERY LOWb (5,000 to 10,000)
LOWa (>10,000 to <50,000)
LOWb (50,000 to <100,000)
MEDIUM (100,000 to <1,000,000)
HIGH (>1,000,000)

East
Region

Southwest
Region

Northwest
Region

Key West

Karenia brevis counts, 4-7 October 2004

A

B

Figure 7.2 (a – d) MODIS images on 1 October 2004 showing diatom blooms
off Tampa Bay (A, 27.75◦N, 82.56◦W) and Charlotte Harbor (B, 26.75◦N, 82.1◦W).
The images cover the area between approximately 24.5◦–30.1◦N and 85.1◦–
81.5◦W. The various image types were generated using Steps 1 – 5 described
above in the Data and Methods section. In (d), the bbp ratio is defined as
bbp,QAA/bbp,Morel (e) K. brevis concentration (in cells l −1) obtained from FWRI
(http://research.myfwc.com/gallery/image_details.asp?id=20058).

While Figure 7.1 demonstrates the multiple steps used to delineate K. brevis

blooms in optically complex waters on the west Florida Shelf, Figure 7.2 shows

another case where the same technique is used to identify non-K. brevis (in this

case, diatom) blooms. Figure 7.2a shows that, in less than one week after Hurricane

Jeanne’s passage on 26 September 2004, most of the west Florida Shelf waters

http://research.myfwc.com/gallery/image_details.asp?id=20058
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became enriched in CDOM/Chl-a and suspended sediments, all interpreted as high

Chl-a (Figure 7.2b). While the FLH image in Figure 7.2c shows potential blooms in

nearshore waters, especially near the Tampa Bay and Charlotte Harbor mouths, the

bbp ratio image in Figure 7.2d indicates the possibility that these nearshore blooms

are K. brevis blooms, is low. Although concurrent water sample data lack coverage

of most shelf waters, the limited data in Figure 7.2e confirms that the high FLH

patches near Tampa Bay and Charlotte Harbor mouths are non-K. brevis blooms.

Indeed, the FWRI database showed 0 cells l−1 of K. brevis but very high levels (up

to 230,000 cells l−1) of Pseudonitzschia (a toxic diatom) in water samples collected

from piers/beaches off Tampa Bay (e.g. Mullet Key, Anna Maria Island, Skyway

fishing pier, offshore Egmont Key) between 2–7 October 2004. In this case, the image

set used here not only identifies blooms, but also recognizes non-K. brevis blooms.

Combined with the results shown in Figure 7.1, we can conclude that this technique

is efficient, at least for the two cases presented here, in delineating the following

waters: Chl-rich, sediment-poor waters; CDOM-rich, Chl-poor waters; sediment-rich

and/or shallow, clear waters; K. brevis and other bloom waters.

7.4 Training

To help prepare and interpret MODIS imagery, we now go through each step to

generate the various types of MODIS images from a map-projected MODIS Level-3

HDF data file. The MODIS data (Figure 7.3) were collected on 7 October 2006, where

ERGB, Chl-a, FLH, and bbp ratio images are presented in Figures 7.3a-d, respectively.

The following steps were used in SeaDAS for image generation, visualization, and

interpretation, but any other software package that has basic image processing

capabilities and HDF compatibility can also be used.

Step 1: Download the MODIS Level-3 HDF data file from the IOCCG website (http://

www.ioccg.org/handbook/Hu_red/) and open in a SeaDAS Display window. Load the

three bands nLw_443, nLw_488, and nLw_551 in the "Band List Selection Window."

Then, under Utilities => Data Visualization => Load True Color Image, choose "Band

List" instead of "Input File." Choose band numbers 3, 2, 1, for the R, G, B channels,

respectively. Enter 10 for slopes and 0 for intercepts. Load the RGB channels in the

"Band List Selection" window, and display the true colour image. An image similar

to Figure 7.3a should appear in a separate window. A high-resolution coastline can

be overlaid on the image by selecting Setups => Coastline. The final image can be

saved as an 8-bit png image (colour coded 2-dimensional image) or a 24-bit png

image (3-dimensional image) under Functions => Output => Display.

Step 2: Use the same method in Step 1 above to load the "chlor_a" data product

from the HDF file into the "Band List Selection Window," and display the image in a

separate window. The colour shades in this window appear strange because of the

http://www.ioccg.org/handbook/Hu_red/
http://www.ioccg.org/handbook/Hu_red/
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Figure 7.3 (a – d) MODIS images on 7 October 2006 showing K. brevis blooms
off the central west Florida between Tampa Bay (A, 27.75◦N, 82.56◦W) and Char-
lotte Harbor (B, 26.75◦N, 82.1◦W). The images cover the area between approxi-
mately 24.5◦–30.1◦N and 85.1◦–81.5◦W. The various image types were generated
using Steps 1 – 5 described in the Data and Methods section. In (d), the bbp

ratio is defined as bbp,QAA/bbp,Morel (e) K. brevis concentration (in cells l −1) ob-
tained from FWRI (http://research.myfwc.com/gallery/image_details.
asp?id=24504.

colour encoding in Step 1. The colour scheme can be changed to a "rainbow" colour

by selecting "Chlorophyll a" in the list of colours from Functions => Color Lut =>

Load Lut. The Chl-a image with this colour scheme may appear different to that in

Figure 7.3b, but the colour stretch can be adjusted by selecting Functions => Rescale

with a log stretch. A colour legend can be added by selecting Functions => Color Bar

=> On, and a high-resolution coastline can also be added using methods in Step 1.

The final image can be saved as a colour-coded png image, similar to Step 1.

http://research.myfwc.com/gallery/image_details.asp?id=24504
http://research.myfwc.com/gallery/image_details.asp?id=24504
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Step 3: The same steps as in Step 2 are used to load the "flh" data product from the

HDF file, display it in a separate window, adjust the colour stretch, and save it as

a colour-coded png image. Note that to show details at low values, a logarithmic

colour stretch is required under Functions => Rescale.

Step 4: The SeaDAS software allows a user to define a new parameter using existing

parameters. Based on the "chlor_a" data available in the "Band List Selection" window,

Equation 7.1 is used to estimate bbp,Morel. Assuming "chlor_a" is the 5th band in the

band list, type in the following commands under Utilities => Data Manipulation =>

User Defined Operations:

bad_idx=where(B5 lt 0.001)

B5[bad_idx]=0.001

result=0.3*B5^0.62*(0.002 + 0.02 * (0.5 - 0.25 * alog10(B5)))

Then, type in "bbp_morel" in the "New band name" field, and click "Run." This will

create a new parameter "bbp_morel" in the "Band List Selection" window (assuming it

is the 6th band in the window). Load bbp_551_qaa from the HDF file to this window

(assuming it is the 7th band in the window). In the "User Defined Operations" window

type in the following commands:

result=B7/B6

low_chl_idx = where(B5 lt 1.5)

result[low_chl_idx]=0.0

Then, type in "bbp_ratio" in the "New band name" field, and click "Run." This will

create a new parameter "bbp_ratio" in the "Band List Selection" window. This band

can be displayed, colour stretched, and saved as a colour-coded png image (together

with a colour legend) using the same steps as above. The saved image should appear

as the opposite of Figure 7.3d with the cold colours representing low values and the

warm colours representing high values.

7.5 Questions

Q1: What do the various colour shades in Figure 7.3a mean? Do the dark shades

between Tampa Bay and Charlotte Harbor indicate high Chl-a?

Q2: Do the high Chl-a values (yellowish and reddish colours indicated on the colour

legend) in Figure 7.3b represent high chlorophyll-a concentrations or something

else?

Q3: What do the high FLH values in Figure 7.3c mean?
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Q4: Do the low "bbp_ratio" values in Figure 7.3d indicate K. brevis blooms?

7.6 Answers

A1: Similar to Figure 7.1a, the various colour shades in the RGB image can be

used to qualitatively distinguish various waters. Dark colours result from high

concentrations of CDOM and/or chlorophyll-a, but it is impossible to tell which

of the two is dominant because they both strongly absorb blue light. So the dark

shades between Tampa Bay and Charlotte Harbor do not necessarily indicate high

Chl-a. The bright colours in the ERGB image result from suspended sediments

and/or shallow bottom because they both strongly scatter light.

A2: The warm colours in coastal waters do not necessarily indicate high Chl-a be-

cause the band-ratio empirical algorithm used to derive Chl-a could falsely interpret

other water constituents (CDOM, suspended sediments, and shallow bottom) as

chlorophyll-a.

A3: While FLH is a reliable measure of biomass (Chl-a) in sediment-poor waters, in

sediment-rich waters high FLH values may be simply due to high turbidity and not

due to high Chl-a. Thus, combining Figure 7.3c with Figure 7.3a where sediment-rich

waters can be easily identified, we can infer that high FLH values associated with

dark waters in Figure 7.3a (between Tampa Bay and Charlotte Harbor) are likely

associated with high biomass, while high FLH values associated with bright waters

in Figure 7.3a (in the northern and southern parts of the coastal waters) are likely

associated with high concentrations of suspended sediments.

A4: The low "bbp_ratio" values in Figure 7.3d very likely indicate K. brevis blooms.

These blooms have a lower backscattering efficiency compared with non-K. brevis

blooms. The waters with bbp_ratio < 1 can be classified as dominated by K. brevis

cells. Indeed, analysis of near-concurrent FWRI water sample data (Figure 7.3e)

confirms this inference for coastal waters between Tampa Bay and Charlotte Harbor.

However, it is unknown if waters in the northern part of Florida (associated also with

low bbp_ratio but high FLH) contain high concentrations of K. brevis, because CDOM

interference to MODIS Chl may lead to erroneously overestimated Chl and lower-

than-real bbp ratio. A related case can be found in Figure 7.1d, where offshore waters

north of Tampa Bay show high CDOM (Figure 7.1a) and erroneously high MODIS Chl

(Figure 7.1b and c), leading to low bbp_ratio with high Chl. Cross-examination of all

four types of imagery is necessary to rule out potential false positive detection.
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7.7 Discussion and Summary

We demonstrated the principles of K. brevis bloom detection using a combination of

MODIS imagery and techniques proposed by Hu et al. (2005) and Cannizzaro et al.

(2008). Several other methods have been published (Stumpf et al., 2003a; Tomlinson

et al., 2004; 2008; Amin et al., 2009), but our purpose here is to show the principles

as opposed to providing a comprehensive review on the various techniques.

The three cases shown here are successful examples. However, we must rec-

ognize that nature is more complex than shown here, and none of the published

techniques is perfect. Indeed, our methods can result in both false-positives (i.e.,

identifies K. brevis blooms in non-bloom waters) and false negatives (i.e., identifies

non-bloom in K. brevis bloom waters). Although the evaluation results of Tomlinson

et al. (2008) show low possibilities (about 20 – 30%) for both error types if different

image types are combined, such possibilities cannot be neglected.

The 70–80% success rate of the K. brevis bloom detection methods provides

useful information in at least two aspects: 1) to document the K. brevis occurrence

patterns in both space and time to help understand their initiation, maintenance,

and control mechanisms and 2) to guide rapid response in field surveys. This

capability, combined with the free availability of both MODIS data and processing

software (SeaDAS), makes it particularly useful in implementing any regional satellite-

based HABs monitoring system. The reader is cautioned, however, that not every

HAB species contains high chlorophyll-a pigment or displays low backscattering

efficiency. For a particular region, a regional algorithm based on the unique optical

characteristics of HABs is often required.

At the time of writing, MODIS data from the Aqua satellite (afternoon pass,

2002 – present) are considered to be of science quality, but MODIS data from the

Terra satellite (morning pass, 1999 – present) are provisional. The ocean colour

community, especially the NASA Ocean Biology Processing Group (OBPG), is making

progress by removing noise and improving calibration/retrieval algorithms for

MODIS-Terra. The combined MODIS instruments will significantly increase the

spatial/temporal coverage in many coastal regions, thus providing additional values

in HABs monitoring. Likewise, when MERIS data (Medium Resolution Imaging

Spectrometer, 2002 – present) at 300-m resolution are used, the capability to detect

small-patch blooms should be enhanced. In the absence of fluorescence data (e.g.,

SeaWiFS is not equipped with the fluorescence bands), other techniques (e.g., Chl-

anomaly or spectral curvature, see Tomlinson et al., 2008) can also be used.

In summary, ocean-colour satellite imagery is particularly useful in detecting

and monitoring HAB events because of their synoptic and frequent coverage as well

as the information carried in their spectral reflectance. Correct interpretation of the

various image types requires sufficient knowledge in bio-optics and phytoplankton

dynamics. In any case, the full potential of satellite remote sensing of HABs can

only be realized through coordinated efforts between remote sensing specialists,
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environmental scientists, coastal managers, and other groups.
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