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7.1 Background

Many of the red tides (i.e., harmful algal blooms or HABs) in the eastern Gulf of
Mexico (GOM) (24°-31°N, 90°-80°W) are caused by the toxic dinoflagellate, Karenia
brevis (previously known as Gymnodinium breve or G. breve). Brevetoxins produced
during K. brevis blooms can kill fish, mammals, and other marine organisms and
cause respiratory irritation in humans (Hemmert, 1975; Asai et al., 1982; Landsberg
and Steidinger, 1998; Kirkpatrick et al., 2004; Flewelling et al., 2005). K. brevis
blooms can also adversely impact local tourism and commercial shellfish industries,
leading to economic losses that have exceeded millions of US dollars during a single
bloom event (Habas and Gilbert, 1974; Larkin and Adams, 2007).

Although K. brevis blooms can change the water to many different colours (e.g.,
brown, red, or even black) depending on the bloom’s cell concentration and the
concentration of other important optical constituents (Dierssen et al., 2006), they
are commonly referred to as red tides. In the eastern GOM, red tides occur every
year, mainly from late summer to early spring, yet their occurrence frequency,
intensity, spatial extent, and duration all vary from year to year. Despite many years
of community efforts, the mechanisms of initiation, maintenance and demise of red
tides are still poorly understood and require further investigation. Data collected
between the 1950’s and the 1980’s suggest that red tides are initiated offshore
in nutrient-poor waters (Tester and Steidinger, 1997), and that they move toward
shore by winds and currents, where they concentrate near fronts and utilize new
nutrients from coastal runoff (Walsh et al., 2006). Several hypotheses that attempt to
explain new nutrient supplies for these HABs have been proposed, including nitrogen
fixation stimulated by atmospheric deposition of iron-rich Saharan dust particles
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(Lenes et al., 2001; Walsh and Steidinger, 2001; Walsh et al., 2006), submarine
groundwater discharge (Hu et al., 2006), and dead fish (Walsh et al., 2009). These
hypotheses remain to be tested, and these possible sources need to be evaluated
relative to sources such as upwelling of deeper GOM waters, riverine inputs, and
benthic nutrient regeneration.

Timely information of K. brevis blooms is essential for all aspects of red tide
studies, including testing hypotheses, assessing and managing the coastal environ-
ment, and forecasting and mitigation of red tides. In the past few decades, several
long-term monitoring programs have invested significant resources in collecting red
tide information. These include the Monitoring and Event Response for Harmful
Algal Blooms (MERHAB) program supported by the U.S. NOAA (National Oceanic
and Atmospheric Administration) and the Florida Fish and Wildlife Research Insti-
tute, several other programs supported by the state of Florida, local environmental
groups, and volunteers. Most of these efforts rely on water sample analysis from
field surveys because this is currently the only accurate means to differentiate K.
brevis from other phytoplankton species. However, field surveys are often lim-
ited in spatial coverage and temporal frequency, especially during severe weather
events. This lack of synoptic and frequent field observations makes it difficult to
1) provide near real-time information for rapid response, and 2) understand the
long-term red tide occurrence statistics. For example, there has been substantial
discussion and debate within the scientific community as to whether there is any
historical trend in red tide occurrence along the west-central Florida coast. While
Brand and Compton (2007) found that the frequency and duration of red tides
appear to have increased in recent years, there was also argument (Christman and
Young, 2006; Alcock, 2007) that this observation may simply be due to the un-
evenly distributed sampling scheme, the so-called observer effect (i.e. increased
sampling during recent years because of increased public and scientific awareness -
http://research.myfwc.com/features/view_article.asp?id=27095).

In addition to the intensive field sampling efforts, satellite remote sensing can
offer synoptic and more frequent measurements, with imagery available in near
real-time (Babin et al., 2008). Therefore, detection of red tides via remote sensing
is highly desirable, and thus has been an active research topic. Satellite imagery
already has been used for operational monitoring of HABs in the GOM region. Some
of the disadvantages are that satellite remote sensing using visible radiance is
limited by cloud cover, spatial resolution, lack of information with depth below
the surface, and algorithm uncertainty. While the first three are inherent with a
given satellite-based instrument and cannot be fully "corrected", there has been
continuous progress in algorithm development to improve the accuracy in red tide
detection. Here, using several examples, we demonstrate how to use Moderate
Resolution Imaging Spectroradiometer (MODIS) satellite imagery to differentiate the
various waters, including K. brevis red tides in the eastern GOM. We will begin by
reviewing briefly the underlying principles of red tide detection from space, and
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follow with descriptions of the data and methods. We show several examples to
illustrate the potential of this technology.

7.1.1 Principles

The use of ocean-colour satellites for rapid detection of red tides in the eastern GOM
has been described previously (e.g., Stumpf et al., 2003a; Tomlinson et al., 2004;
2008; Hu et al., 2005; Cannizzaro et al., 2008; Amin et al., 2009). K. brevis cells
contain chlorophyll-a and accessory pigments. These pigments have reflectance
spectra that allow them to be differentiated from other water constituents, such as
suspended non-living particles. The chlorophyll-a content of K. brevis cells ranges
from ~8.5 pg/cell for natural populations to ~25 pg/cell for cultured populations
(Evens et al., 2001). Assuming 10 pg/cell, a concentration of 2x10* cells 1-! implies
0.2 mg m~3 of chlorophyll-a, close to the clear-water background chlorophyll-a
concentration (Chl-a) in the eastern GOM. Satellite ocean-colour instruments typically
have a measurement precision (not accuracy) of 0.01 - 0.02 mg m~3 for blue waters.
In order for a K. brevis bloom to be detected and identified as such, however, Chl-a
needs to exceed 0.5 - 1 mg m 3, corresponding to K. brevis cell concentrations of
5x10%* to 10° cells 171. These concentrations are high enough to cause fish kills
(Steidinger et al., 1998).

Satellite-derived Chl-a data products can be used to identify areas of possible red
tides. For example, a Chl-anomaly technique was proposed by Stumpf et al. (2003a)
to flag "new" blooms in an area relative to conditions two weeks earlier — under
certain conditions these new blooms can be flagged as potential K. brevis blooms.

There are practical difficulties when applying the Chl-based approach to identify
red tides in the eastern GOM using remote sensing data. The first is the difficulty
with obtaining an accurate chlorophyll estimate in many coastal waters because
of errors in the atmospheric correction algorithms (to remove atmospheric effects
from the spectral satellite signal) and bio-optical inversion algorithms (to convert
the surface spectral signal to Chl-a and other bio-optical parameters). In these
waters, the optical signal may not be dominated by phytoplankton, but instead by
coloured dissolved organic matter (CDOM) from in situ phytoplankton degradation or
terrestrial runoff, resuspended sediments, and/or the bottom effects in clear, shallow
water. The empirical band-ratio OC4 algorithm (O’Reilly et al., 2000; version 4) that
is used to convert the surface spectral signal to Chl-a does not differentiate between
optically important constituents, but rather regards all influences as originating
from Chl-a. This causes large errors in the Chl-a estimates for the eastern GOM
coastal waters (Hu et al., 2003; 2005). Although a semi-analytical algorithm designed
for MODIS (Carder et al., 1999) can separate CDOM from Chl-a and thus improve
Chl-a estimates in clear and moderately turbid waters (Hu et al., 2003), in highly
turbid coastal waters the algorithm switches to an empirical blue/green band-ratio
form.
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The second difficulty is differentiating K. brevis blooms from other phytoplank-
ton blooms. Chl-a cannot be used for this task because both types of blooms contain
high Chl-a. Discrimination between K. brevis and other phytoplankton groups using
in situ optical observations has been done with some success (Cullen et al., 1997;
Millie et al., 1997; Lohrenz et al.,, 1999; Schofield et al., 1999; Kirkpatrick et al.,
2000). However, these techniques require hyperspectral data (e.g., Craig et al., 2006),
which are not available from satellites. Several HAB detection techniques have been
proposed that can use multi-spectral satellite data. These include methods involving
particulate backscattering (Cannizzaro et al., 2008), spectral curvature (Tomlinson
et al., 2008), a combination of red-wavelength bands (Amin et al., 2009), and image
segmentation (Zhang et al., 2002).

In this demonstration, we will combine the techniques proposed by Hu et al.
(2005) and Cannizzaro et al. (2008). We used MODIS satellite data to show how
to differentiate bloom waters from coastal waters in which other constituents
dominate the optical signal, and to differentiate K. brevis blooms from other blooms.
Specifically, we distinguished phytoplankton blooms from CDOM-rich waters by
examining spectral water-leaving radiance and solar stimulated fluorescence (Hu et
al., 2005), and K. brevis blooms were distinguished from non-K. brevis blooms by
examining bloom backscattering efficiency (Cannizzaro et al., 2008).

7.2 Data and Methods

MODIS Level-1a data were obtained from the U.S. NASA Goddard Space Flight Center
(GSFC) (http://oceancolor.gsfc.nasa.gov). These data are open to the public
within a few hours (typically 3 - 6) of collection by the spacecraft. The following
steps were used to generate georeferenced MODIS images at 1-km resolution:

1. MODIS/Aqua Level-1a data were processed to generate Level-1b (calibrated
total radiance) data for the "ocean colour" spectral wavebands in the visible
and near-infrared, and geolocation data using SeaWiFS Data Analysis System
(SeaDAS) software. The 1-km bands were designed for the ocean with sufficient
sensitivity to detect subtle changes in ocean colour. The Level-1b and geo-
location data were stored in computer files in HDF (Hierarchical Data Format);

2. MODIS Level-1b data were atmospherically corrected to generate the spec-
tral remote sensing reflectance (Rys(A), sr™1) and normalized water-leaving
radiance (nLw(A), mW cm~2 um~! sr~!) using SeaDAS. These two parameters
can be derived from each other using the extraterrestrial solar irradiance
(time-independent constants). During this step, ancillary data (surface wind,
pressure, total ozone thickness, and atmospheric water vapor content) were
downloaded from NASA/GSFC and used to estimate the atmospheric contribu-
tion to the satellite-received radiance. The atmospheric correction was based
on the two near-infrared (NIR) bands at 748 nm and 869 nm, from which atmo-
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spheric properties were derived and used to estimate the properties at other
wavelengths on a per-pixel basis (Gordon and Wang, 1994). Over turbid coastal
waters, a modification to the atmospheric correction scheme was used that
involves using an iterative approach to account for the non-zero water-leaving
radiance in the NIR (Stumpf et al., 2003b);

3. The spectral Rys(A) was used to derive two data products: Chl-a from an em-
pirical band-ratio algorithm (OC4v4; O’Reilly et al., 2000); particulate backscat-
tering coefficient at 551 nm (bpp,551) using a Quasi-Analytical Algorithm (QAA,
Lee et al,, 2002). Using nL.w(A) data from three MODIS wavebands at 667, 678,
and 748 nm we derived the Fluorescence Line Height (FLH, mW ¢cm™2 pym™!
sr~!) product using a linear baseline algorithm (Letelier et al., 1996). Further,
the empirically-derived Chl-a was used to estimate the particulate backscat-
tering coefficient at 551 nm using the Morel (1988) algorithm, designed for
phytoplankton dominated (i.e., Case 1) waters:

bpmorel = 0.3 X Ch1%%% x (0.002 + 0.02 x (0.5 — 0.25 x log;,Chl))  (7.1)

4. These products Rys(A), nLw(A), Chl-a, bppoaa, bopmorel and FLH) were geo-
referenced to a cylindrical equidistant (rectangular, also called geographic
lat/lon) projection for the area of interest. The final images had a spatial
resolution equivalent to 1-km per image pixel. The map-projected products
were stored in HDF files. Individual products were also converted to raster
image formats with an embedded palette using pre-defined colour look-up
tables;

5. nLw(A) data at 551, 488, and 443 nm were used as the red, green and blue
channels to compose an Enhanced RGB (ERGB) image. The red waveband (667
nm) was not used because water-leaving radiance at this wavelength (nLw(667))
is very low except in sediment-rich waters, thus providing little information
on red tides.

The Florida Fish and Wildlife Research Institute (FWRI) has compiled an in situ
database for K. brevis cell concentration data. Water samples have been collected
by various research and volunteer groups in the eastern GOM and analyzed using
microscopic enumeration techniques. These data, although not continuous in either
space or time, were used as ground-truth to help interpret the MODIS imagery. Below
we demonstrate, step by step, how the various colour features are identified and
interpreted from the MODIS imagery.

7.3 Demonstration

In 2005, a long-lasting, extensive red tide event occurred on the west Florida shelf
(WFS, 24.5°-30.1°N and 85.1°-81.5°W), which may have been related to excessive
rainfall in both 2004 and 2005 (Hu et al., 2006). The event started in January 2005
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near Tampa Bay, Florida (Tampa Bay is marked as "A" in Figure 7.1a). Figure 7.1
shows several MODIS products from a scene collected on 21 January 2005, where
the red tide patch can be seen.
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Northwest
Region East
Region
Cells/liter

© NOT PRESENT Y
© PRESENT (1,000 cells or less) Southwest
® VERY LOWa (>1,000 to <5,000) ;
@ VERY LOWb (5,000 to 10,000) Region
@ LOWa (>10,000 to <50,000)
© Lowb (50,000 to <100,000) 1
D MEDIUM (100,000 to <1,000,000)

0 30 60 Mies
@ HIGH (>1,000,000) = et

.
Key West

Figure 7.1 (a-d) MODIS images on 21 January 2005 showing a K. brevis bloom
in coastal waters between Tampa Bay (A, 27.75°N, 82.56°W) and Charlotte Har-
bor (B, 26.75°N, 82.1°W). The images cover the area between approximately
24.5°-30.1°N and 85.1°-81.5°W. The various image types were generated us-
ing Steps 1 - 5 described in the Data and Methods section. In (d), the by
ratio is defined as byp gaa/bopMorel (€) K. brevis concentration (in cells 11 ob-
tained from FWRI (http://research.myfwc.com/gallery/image_details.
asp?id=24764).

Figure 7.1a shows an ERGB image, where the dark colours result from increased
light absorption in the blue wavelength (443 nm) due to high concentrations of
CDOM and/or chlorophyll-a, and bright colours (light blue, yellow and white) result
from suspended sediments and/or shallow bottom. The corresponding Chl-a image
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in Figure 7.1b, derived from the blue-green band ratio algorithm, shows erroneously
elevated Chl-a along the entire coast. In contrast, the FLH image in Figure 7.1c
helps distinguish dark CDOM-rich waters (erroneously interpreted as high Chl-a in
band ratio algorithms) from phytoplankton-rich waters. FLH is insensitive to CDOM
(McKee et al., 2007). However, FLH is not a reliable parameter in sediment-rich waters
(Gilerson et al., 2007). The high FLH values near Charlotte Harbor (Charlotte Harbor
is marked as "B" in Figure 7.1a) for example, may in part be false interpretation of
suspended sediments.

Figure 7.1 reveals: 1) Chl-rich waters (dark colour in ERGB with high FLH values);
2) CDOM-rich waters (dark colour in ERGB with low FLH values); 3) sediment-rich
waters (bright colour in ERGB with high FLH values); and 4) shallow, clear waters
(bright colour in ERGB with low FLH values). Of these, observations 3 and 4 are
sometimes difficult to distinguish from each other, especially for very shallow waters
(< 5 m water depth) because nLw in the fluorescence bands may also be influenced
by benthic algae or sediments. This should not affect our interpretation because
both cases are excluded as potential K. brevis blooms. Of the four, observation 1
represents waters with high biomass (Chl-a) and therefore can be K. brevis or other
blooms. However, there are two drawbacks from this interpretation. The first is its
qualitative nature. Indeed, the terms "high" and "low" only provide a relative sense.
The second drawback is that it is impossible to tell if the high-FLH dark waters
contain high concentrations of the toxic K. brevis or other phytoplankton species
(such as diatoms).

To overcome these two difficulties, we first assume that FLH > 0.015 - 0.02 mW
cm~? pym~! sr~! can indicate bloom conditions and FLH < 0.01 - 0.015 represent non-
bloom conditions (note that the values between 0.01 and 0.02 represent transition
conditions). Observations from South Florida coastal waters suggest that a FLH
value of 0.01 mW cm~2 um~! sr~! is equivalent to about 1 mg m~3 Chl-a for the
range of 0.4 - 4 mg m—3 (Chl = 1.255 x (FLH x 100)%86  r=0.92, n=77, Hu et al.,
2005), although the relationship between FLH and Chl-a (a function of fluorescence
efficiency) varies.

The technique proposed by Cannizzaro et al. (2008) was then used to examine
the backscattering coefficient at 551 nm (byp 551) estimated with the QAA algorithm
(Lee et al., 2002) in reference against bpp morel from a Case-1 empirical algorithm
(Morel, 1988; Equation 7.1). Results are shown in Figure 7.1d. To exclude non-
productive waters, pixels with Chl-a < 1.5 mg m~3 are masked as black. Because K.
brevis blooms exhibit a lower backscattering efficiency compared to diatom blooms,
the warm colours (yellow-red, with byp 551/bbp,morel < 1.0) in Figure 7.1d represent
potential K. brevis blooms. Indeed, near concurrent in situ water sample analysis
from FWRI confirms this finding (Figure 7.1e), where waters offshore of Tampa
Bay showed medium concentrations of K. brevis cells (100,000 to <1,000,000 cells
171). Further, in nearshore waters there were no K. brevis found in these samples,
consistent with the high by, ratios shown in Figure 7.1d. In other words, the high-
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FLH values near Charlotte Harbor (sediment-rich water as identified by the bright
colour in Figure 7.1a) is successfully discarded as potential K. brevis blooms in
Figure 7.1d.

Karenia brevis counts, 4-7 October 2004
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Figure 7.2 (a - d) MODIS images on 1 October 2004 showing diatom blooms
off Tampa Bay (A, 27.75°N, 82.56°W) and Charlotte Harbor (B, 26.75°N, 82.1°W).
The images cover the area between approximately 24.5°-30.1°N and 85.1°-
81.5°W. The various image types were generated using Steps 1 - 5 described
above in the Data and Methods section. In (d), the by, ratio is defined as
Dup.oan/bopMorel (€) K. brevis concentration (in cells 1 ~!) obtained from FWRI
(http://research.myfwc.com/gallery/image_details.asp?id=20058).

While Figure 7.1 demonstrates the multiple steps used to delineate K. brevis
blooms in optically complex waters on the west Florida Shelf, Figure 7.2 shows
another case where the same technique is used to identify non-K. brevis (in this
case, diatom) blooms. Figure 7.2a shows that, in less than one week after Hurricane
Jeanne’s passage on 26 September 2004, most of the west Florida Shelf waters
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became enriched in CDOM/Chl-a and suspended sediments, all interpreted as high
Chl-a (Figure 7.2b). While the FLH image in Figure 7.2c shows potential blooms in
nearshore waters, especially near the Tampa Bay and Charlotte Harbor mouths, the
by ratio image in Figure 7.2d indicates the possibility that these nearshore blooms
are K. brevis blooms, is low. Although concurrent water sample data lack coverage
of most shelf waters, the limited data in Figure 7.2e confirms that the high FLH
patches near Tampa Bay and Charlotte Harbor mouths are non-K. brevis blooms.
Indeed, the FWRI database showed O cells 17! of K. brevis but very high levels (up
to 230,000 cells 171) of Pseudonitzschia (a toxic diatom) in water samples collected
from piers/beaches off Tampa Bay (e.g. Mullet Key, Anna Maria Island, Skyway
fishing pier, offshore Egmont Key) between 2-7 October 2004. In this case, the image
set used here not only identifies blooms, but also recognizes non-K. brevis blooms.
Combined with the results shown in Figure 7.1, we can conclude that this technique
is efficient, at least for the two cases presented here, in delineating the following
waters: Chl-rich, sediment-poor waters; CDOM-rich, Chl-poor waters; sediment-rich
and/or shallow, clear waters; K. brevis and other bloom waters.

7.4 Training

To help prepare and interpret MODIS imagery, we now go through each step to
generate the various types of MODIS images from a map-projected MODIS Level-3
HDF data file. The MODIS data (Figure 7.3) were collected on 7 October 2006, where
ERGB, Chl-a, FLH, and by, ratio images are presented in Figures 7.3a-d, respectively.
The following steps were used in SeaDAS for image generation, visualization, and
interpretation, but any other software package that has basic image processing
capabilities and HDF compatibility can also be used.

Step 1: Download the MODIS Level-3 HDF data file from the IOCCG website (http://
www.ioccg.org/handbook/Hu_red/) and open in a SeaDAS Display window. Load the
three bands nLw_443, nLw_488, and nLw_551 in the "Band List Selection Window."
Then, under Utilities => Data Visualization => Load True Color Image, choose "Band
List" instead of "Input File." Choose band numbers 3, 2, 1, for the R, G, B channels,
respectively. Enter 10 for slopes and 0 for intercepts. Load the RGB channels in the
"Band List Selection" window, and display the true colour image. An image similar
to Figure 7.3a should appear in a separate window. A high-resolution coastline can
be overlaid on the image by selecting Setups => Coastline. The final image can be
saved as an 8-bit png image (colour coded 2-dimensional image) or a 24-bit png
image (3-dimensional image) under Functions => Output => Display.

Step 2: Use the same method in Step 1 above to load the "chlor_a" data product
from the HDF file into the "Band List Selection Window," and display the image in a
separate window. The colour shades in this window appear strange because of the
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Figure 7.3 (a - d) MODIS images on 7 October 2006 showing K. brevis blooms
off the central west Florida between Tampa Bay (A, 27.75°N, 82.56°W) and Char-
lotte Harbor (B, 26.75°N, 82.1°W). The images cover the area between approxi-
mately 24.5°-30.1°N and 85.1°-81.5°W. The various image types were generated
using Steps 1 - 5 described in the Data and Methods section. In (d), the by
ratio is defined as byp,qaa/bopmorel (€) K. brevis concentration (in cells 1 -1) ob-
tained from FWRI (http://research.myfwc.com/gallery/image_details.
asp?id=24504.

colour encoding in Step 1. The colour scheme can be changed to a "rainbow" colour
by selecting "Chlorophyll a" in the list of colours from Functions => Color Lut =>
Load Lut. The Chl-a image with this colour scheme may appear different to that in
Figure 7.3b, but the colour stretch can be adjusted by selecting Functions => Rescale
with a log stretch. A colour legend can be added by selecting Functions => Color Bar
=> On, and a high-resolution coastline can also be added using methods in Step 1.
The final image can be saved as a colour-coded png image, similar to Step 1.
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Step 3: The same steps as in Step 2 are used to load the "flh" data product from the
HDF file, display it in a separate window, adjust the colour stretch, and save it as
a colour-coded png image. Note that to show details at low values, a logarithmic
colour stretch is required under Functions => Rescale.

Step 4: The SeaDAS software allows a user to define a new parameter using existing
parameters. Based on the "chlor_a" data available in the "Band List Selection" window,
Equation 7.1 is used to estimate bpp Morel. Assuming "chlor_a" is the 5t hand in the
band list, type in the following commands under Utilities => Data Manipulation =>
User Defined Operations:

bad_idx=where(B5 1t 0.001)
B5[bad_idx]=0.001
result=0.3+%B5A0.62%(0.002 + 0.02 * (0.5 - 0.25 * alogl0(B5)))

Then, type in "bbp_morel" in the "New band name" field, and click "Run." This will
create a new parameter "bbp_morel" in the "Band List Selection" window (assuming it
is the 6™ band in the window). Load bbp_551_qgaa from the HDF file to this window
(assuming it is the 7™ band in the window). In the "User Defined Operations" window
type in the following commands:

result=B7/B6
Tow_ch1_idx = where(B5 1t 1.5)
result[lTow_ch1_idx]=0.0

Then, type in "bbp_ratio” in the "New band name" field, and click "Run." This will
create a new parameter "bbp_ratio” in the "Band List Selection" window. This band
can be displayed, colour stretched, and saved as a colour-coded png image (together
with a colour legend) using the same steps as above. The saved image should appear
as the opposite of Figure 7.3d with the cold colours representing low values and the
warm colours representing high values.

7.5 Questions

Q1: What do the various colour shades in Figure 7.3a mean? Do the dark shades
between Tampa Bay and Charlotte Harbor indicate high Chl-a?

Q2: Do the high Chl-a values (yellowish and reddish colours indicated on the colour
legend) in Figure 7.3b represent high chlorophyll-a concentrations or something
else?

Q3: What do the high FLH values in Figure 7.3c mean?
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Q4: Do the low "bbp_ratio" values in Figure 7.3d indicate K. brevis blooms?

7.6 Answers

Al: Similar to Figure 7.1a, the various colour shades in the RGB image can be
used to qualitatively distinguish various waters. Dark colours result from high
concentrations of CDOM and/or chlorophyll-a, but it is impossible to tell which
of the two is dominant because they both strongly absorb blue light. So the dark
shades between Tampa Bay and Charlotte Harbor do not necessarily indicate high
Chl-a. The bright colours in the ERGB image result from suspended sediments
and/or shallow bottom because they both strongly scatter light.

A2: The warm colours in coastal waters do not necessarily indicate high Chl-a be-
cause the band-ratio empirical algorithm used to derive Chl-a could falsely interpret
other water constituents (CDOM, suspended sediments, and shallow bottom) as
chlorophyll-a.

A3: While FLH is a reliable measure of biomass (Chl-a) in sediment-poor waters, in
sediment-rich waters high FLH values may be simply due to high turbidity and not
due to high Chl-a. Thus, combining Figure 7.3c with Figure 7.3a where sediment-rich
waters can be easily identified, we can infer that high FLH values associated with
dark waters in Figure 7.3a (between Tampa Bay and Charlotte Harbor) are likely
associated with high biomass, while high FLH values associated with bright waters
in Figure 7.3a (in the northern and southern parts of the coastal waters) are likely
associated with high concentrations of suspended sediments.

A4: The low "bbp_ratio" values in Figure 7.3d very likely indicate K. brevis blooms.
These blooms have a lower backscattering efficiency compared with non-K. brevis
blooms. The waters with bbp_ratio < 1 can be classified as dominated by K. brevis
cells. Indeed, analysis of near-concurrent FWRI water sample data (Figure 7.3e)
confirms this inference for coastal waters between Tampa Bay and Charlotte Harbor.
However, it is unknown if waters in the northern part of Florida (associated also with
low bbp_ratio but high FLH) contain high concentrations of K. brevis, because CDOM
interference to MODIS Chl may lead to erroneously overestimated Chl and lower-
than-real bbp ratio. A related case can be found in Figure 7.1d, where offshore waters
north of Tampa Bay show high CDOM (Figure 7.1a) and erroneously high MODIS Chl
(Figure 7.1b and c), leading to low bbp_ratio with high Chl. Cross-examination of all
four types of imagery is necessary to rule out potential false positive detection.
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7.7 Discussion and Summary

We demonstrated the principles of K. brevis bloom detection using a combination of
MODIS imagery and techniques proposed by Hu et al. (2005) and Cannizzaro et al.
(2008). Several other methods have been published (Stumpf et al., 2003a; Tomlinson
et al., 2004; 2008; Amin et al., 2009), but our purpose here is to show the principles
as opposed to providing a comprehensive review on the various techniques.

The three cases shown here are successful examples. However, we must rec-
ognize that nature is more complex than shown here, and none of the published
techniques is perfect. Indeed, our methods can result in both false-positives (i.e.,
identifies K. brevis blooms in non-bloom waters) and false negatives (i.e., identifies
non-bloom in K. brevis bloom waters). Although the evaluation results of Tomlinson
et al. (2008) show low possibilities (about 20 - 30%) for both error types if different
image types are combined, such possibilities cannot be neglected.

The 70-80% success rate of the K. brevis bloom detection methods provides
useful information in at least two aspects: 1) to document the K. brevis occurrence
patterns in both space and time to help understand their initiation, maintenance,
and control mechanisms and 2) to guide rapid response in field surveys. This
capability, combined with the free availability of both MODIS data and processing
software (SeaDAS), makes it particularly useful in implementing any regional satellite-
based HABs monitoring system. The reader is cautioned, however, that not every
HAB species contains high chlorophyll-a pigment or displays low backscattering
efficiency. For a particular region, a regional algorithm based on the unique optical
characteristics of HABs is often required.

At the time of writing, MODIS data from the Aqua satellite (afternoon pass,
2002 - present) are considered to be of science quality, but MODIS data from the
Terra satellite (morning pass, 1999 - present) are provisional. The ocean colour
community, especially the NASA Ocean Biology Processing Group (OBPG), is making
progress by removing noise and improving calibration/retrieval algorithms for
MODIS-Terra. The combined MODIS instruments will significantly increase the
spatial/temporal coverage in many coastal regions, thus providing additional values
in HABs monitoring. Likewise, when MERIS data (Medium Resolution Imaging
Spectrometer, 2002 - present) at 300-m resolution are used, the capability to detect
small-patch blooms should be enhanced. In the absence of fluorescence data (e.g.,
SeaWiFS is not equipped with the fluorescence bands), other techniques (e.g., Chl-
anomaly or spectral curvature, see Tomlinson et al., 2008) can also be used.

In summary, ocean-colour satellite imagery is particularly useful in detecting
and monitoring HAB events because of their synoptic and frequent coverage as well
as the information carried in their spectral reflectance. Correct interpretation of the
various image types requires sufficient knowledge in bio-optics and phytoplankton
dynamics. In any case, the full potential of satellite remote sensing of HABs can
only be realized through coordinated efforts between remote sensing specialists,
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environmental scientists, coastal managers, and other groups.
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